Strigolactone Signaling Genes Showing Differential Expression Patterns in Arabidopsis max Mutants

Strigolactone (SL) is a recently discovered class of phytohormone that inhibits shoot branching. The molecular mechanism underlying SL biosynthesis, perception, and signal transduction is vital to the plant branching phenotype. Some aspects of their biosynthesis, perception, and signaling include th...

Full description

Saved in:
Bibliographic Details
Published inPlants (Basel) Vol. 8; no. 9; p. 352
Main Authors Kumar, Manu, Kim, Inyoung, Kim, Yeon-Ki, Heo, Jae Bok, Suh, Mi Chung, Kim, Hyun Uk
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 19.09.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Strigolactone (SL) is a recently discovered class of phytohormone that inhibits shoot branching. The molecular mechanism underlying SL biosynthesis, perception, and signal transduction is vital to the plant branching phenotype. Some aspects of their biosynthesis, perception, and signaling include the role of four MORE AXILLARY GROWTH genes, MAX3, MAX4, MAX1, and MAX2. It is important to identify downstream genes that are involved in SL signaling. To achieve this, we studied the genomic aspects of the strigolactone biosynthesis pathway using microarray analysis of four max mutants. We identified SL signaling candidate genes that showed differential expression patterns in max mutants. More specifically, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE 4 (ACC4) and PROTEIN KINASE 3 (PKS3) displayed contrasting expression patterns, indicating a regulatory mechanism in SL signaling pathway to control different phenotypes apart from branching phenotype.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2223-7747
2223-7747
DOI:10.3390/plants8090352