Avalanche Interpretation of the Power-Law Energy Spectrum in Three-Dimensional Dense Granular Flow
Turbulence is ubiquitous in nonequilibrium systems, and it has been noted that even dense granular flows exhibit characteristics that are typical of turbulent flow, such as the power-law energy spectrum. However, studies on the turbulentlike behavior of granular flows are limited to two-dimensional...
Saved in:
Published in | Physical review letters Vol. 122; no. 18; p. 188004 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
10.05.2019
|
Online Access | Get more information |
Cover
Loading…
Summary: | Turbulence is ubiquitous in nonequilibrium systems, and it has been noted that even dense granular flows exhibit characteristics that are typical of turbulent flow, such as the power-law energy spectrum. However, studies on the turbulentlike behavior of granular flows are limited to two-dimensional (2D) flow. We demonstrate that the statistics in three-dimensional (3D) flow are qualitatively different from those in 2D flow. We also elucidate that avalanche dynamics can explain this dimensionality dependence. Moreover, we define clusters of collectively moving particles that are equivalent to vortex filaments. The clusters unveil complicated structures in 3D flows that are absent in 2D flows. |
---|---|
ISSN: | 1079-7114 |
DOI: | 10.1103/physrevlett.122.188004 |