A novel parametric-effect MEMS amplifier

This paper presents the theory and measurements of a mechanical parametric-effect amplifier with a 200-kHz input signal and a 1.84-MHz output signal. The device used is a MEMS time-varying capacitor which is composed of an array of low-stress metallized silicon-nitride diaphragms, and is pumped by a...

Full description

Saved in:
Bibliographic Details
Published inJournal of microelectromechanical systems Vol. 9; no. 4; pp. 528 - 537
Main Authors Raskin, J.-P., Brown, A.R., Khuri-Yakub, B., Rebeiz, G.M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2000
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents the theory and measurements of a mechanical parametric-effect amplifier with a 200-kHz input signal and a 1.84-MHz output signal. The device used is a MEMS time-varying capacitor which is composed of an array of low-stress metallized silicon-nitride diaphragms, and is pumped by a large-signal voltage at 1.64 MHz. This induces a large change in the capacitance, and results in parametric amplification of an input signal at 200 kHz. The parametric amplifier capacitance is 500 pF, resulting in an output impedance of 140 /spl Omega/. A higher impedance can also be achieved with a lower capacitance. To our knowledge, this device is the first-ever MEMS mechanical up-converter parametric-effect amplifier developed with an up-conversion ratio of 9:1. The measurements agree very well with theory, including the effect the series resistance and the and of the MEMS time-varying capacitor. The application areas are in amplifiers which operate at very high temperatures (200/spl deg/C-600/spl deg/C), under high particle bombardment (nuclear applications), in non-semiconductor-based amplification, and in low-noise systems, since parametric amplifiers do not suffer from thermal, shot, or 1/f noise problems.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1057-7157
1941-0158
DOI:10.1109/84.896775