CEBPD Potentiates the Macrophage Inflammatory Response but CEBPD Knock-Out Macrophages Fail to Identify CEBPD-Dependent Pro-Inflammatory Transcriptional Programs

CCAAT/enhancer-binding protein delta (C/EBPδ) is a member of the C/EBP family of transcription factors. According to the current paradigm, C/EBPδ potentiates cytokine production and modulates macrophage function thereby enhancing the inflammatory response. Remarkably, however, C/EBPδ deficiency does...

Full description

Saved in:
Bibliographic Details
Published inCells (Basel, Switzerland) Vol. 10; no. 9; p. 2233
Main Authors Spek, C. Arnold, Aberson, Hella L., Butler, Joe M., de Vos, Alex F., Duitman, JanWillem
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 28.08.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:CCAAT/enhancer-binding protein delta (C/EBPδ) is a member of the C/EBP family of transcription factors. According to the current paradigm, C/EBPδ potentiates cytokine production and modulates macrophage function thereby enhancing the inflammatory response. Remarkably, however, C/EBPδ deficiency does not consistently lead to a reduction in Lipopolysaccharide (LPS)-induced cytokine production by macrophages. Here, we address this apparent discrepancy and show that the effect of C/EBPδ on cytokine production and macrophage function depends on both the macrophage subtype and the LPS concentration used. Using CRISPR-Cas generated macrophages in which the transactivation domain of C/EBPδ was deleted from the endogenous locus (ΔTAD macrophages), we next show that the context-dependent role of C/EBPδ in macrophage biology relies on compensatory transcriptional activity in the absence of C/EBPδ. We extend these findings by revealing a large discrepancy between transcriptional programs in C/EBPδ knock-out and C/EBPδ transactivation dead (ΔTAD) macrophages implying that compensatory mechanisms do not specifically modify C/EBPδ-dependent inflammatory responses but affect overall macrophage biology. Overall, these data imply that knock-out approaches are not suited for identifying the genuine transcriptional program regulated by C/EBPδ, and we suggest that this phenomenon applies for transcription factor families in general.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4409
2073-4409
DOI:10.3390/cells10092233