Recovery of Soil C and N in a Tropical Pasture: Passive and Active Restoration

Soil degradation by deforestation and introduction of exotic grasses is a grave consequence of land‐use change in tropical regions during the last decades. Soil restoration following natural succession (i.e., passive restoration) is slow because of low tree establishment. Introduction of tree planti...

Full description

Saved in:
Bibliographic Details
Published inLand degradation & development Vol. 26; no. 3; pp. 201 - 210
Main Authors Roa‐Fuentes, L. L, Martínez‐Garza, C, Etchevers, J, Campo, J
Format Journal Article
LanguageEnglish
Published Chichester John Wiley & Sons 01.04.2015
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Soil degradation by deforestation and introduction of exotic grasses is a grave consequence of land‐use change in tropical regions during the last decades. Soil restoration following natural succession (i.e., passive restoration) is slow because of low tree establishment. Introduction of tree plantings by human intervention (i.e., active restoration) results in a promising strategy to accelerate forest succession and soil recovery in tropical region. The present research was carried out to explore the restoration of soil properties after cattle exclusion and of grazing combined with native tree planting introduction (legumes and nonlegumes) in a tropical pasture in Veracruz, southeast Mexico. Results indicate that land‐use changes decreased soil C and N pools in both litter and mineral soil. In addition, soil heterogeneity increased by land‐use changes at both temporal and spatial scales. In the short term, passive succession (i.e., cattle exclusion) favors the recovery of C and N content in labile soil pools, indicated by the increase in litter C and N masses as well as C and N concentrations in soil microbial biomass. Soils under active restoration showed trends to recover the N cycling, such as a greater accumulation of N in litter, in soil total N concentrations, soil microbial biomass N concentrations, rates of net N transformations, and extractable water and microbial biomass C:N ratios mainly under legumes species. Active restoration including legume introduction is a key factor for rapid recovery of soil fertility. Copyright © 2013 John Wiley & Sons, Ltd.
Bibliography:http://dx.doi.org/10.1002/ldr.2197
ArticleID:LDR2197
ark:/67375/WNG-F6NZ8MND-3
istex:0B14B277472A67F415AD325674B0CB8A03043CA7
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1085-3278
1099-145X
DOI:10.1002/ldr.2197