Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future

Energy, water, affordable healthcare and global warming are four major global concerns resulting from resource depletion, record high oil prices, clean water shortages, high costs of pharmaceuticals, and changing climate conditions. Among many potential solutions, advances in membrane technology aff...

Full description

Saved in:
Bibliographic Details
Published inProgress in polymer science Vol. 37; no. 10; pp. 1401 - 1424
Main Authors Peng, Na, Widjojo, Natalia, Sukitpaneenit, Panu, Teoh, May May, Lipscomb, G. Glenn, Chung, Tai-Shung, Lai, Juin-Yih
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Energy, water, affordable healthcare and global warming are four major global concerns resulting from resource depletion, record high oil prices, clean water shortages, high costs of pharmaceuticals, and changing climate conditions. Among many potential solutions, advances in membrane technology afford direct, effective and feasible approaches to solve these sophisticated issues. Membrane technology encompasses numerous technology areas including materials science and engineering, chemistry and chemical engineering, separation and purification phenomena, molecular simulation, as well as process and product design. Currently, polymeric hollow fiber membranes made using a non-solvent-induced phase inversion process are the dominant products because polymers offer a broad spectrum of materials chemistry and result in membranes with desirable physicochemical properties for diverse applications. Their low cost and ease of fabrication make polymeric membranes superior to inorganic membranes. Therefore, this review focuses on state-of-the-art polymeric hollow fiber membranes made from non-solvent-induced phase inversion and the potential of membrane processes for sustainable water and energy production. The specific topics include: (i) basic principles of hollow fiber membrane formation and the phase inversion process; (ii) membranes for energy (natural gas, H2, and biofuel) production; (iii) membranes for CO2 capture; and (iv) emerging desalination technologies (forward osmosis and membrane distillation) for water production. Finally, future opportunities and challenges for the development of advanced membrane structures are discussed.
ISSN:0079-6700
1873-1619
DOI:10.1016/j.progpolymsci.2012.01.001