An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels

In this paper, a generic and adaptive geometrybased stochastic model (GBSM) is proposed for non-isotropic multiple-input multiple-output (MIMO) mobile-to-mobile (M2M) Ricean fading channels. The proposed model employs a combined two-ring model and ellipse model, where the received signal is construc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 8; no. 9; pp. 4824 - 4835
Main Authors Xiang Cheng, Cheng-Xiang Wang, Laurenson, D.I., Salous, S., Vasilakos, A.V.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a generic and adaptive geometrybased stochastic model (GBSM) is proposed for non-isotropic multiple-input multiple-output (MIMO) mobile-to-mobile (M2M) Ricean fading channels. The proposed model employs a combined two-ring model and ellipse model, where the received signal is constructed as a sum of the line-of-sight, single-, and doublebounced rays with different energies. This makes the model sufficiently generic and adaptable to a variety of M2M scenarios (macro-, micro-, and pico-cells). More importantly, our model is the first GBSM that has the ability to study the impact of the vehicular traffic density on channel characteristics. From the proposed model, the space-time-frequency correlation function and the corresponding space-Doppler-frequency power spectral density (PSD) of any two sub-channels are derived for a non-isotropic scattering environment. Based on the detailed investigation of correlations and PSDs, some interesting observations and useful conclusions are obtained. These observations and conclusions can be considered as a guidance for setting important parameters of our model appropriately and building up more purposeful measurement campaigns in the future. Finally, close agreement is achieved between the theoretical results and measured data, demonstrating the utility of the proposed model.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2009.081560