Type II DFT solutions from Poisson–Lie $T$-duality/plurality

Abstract String theory has $T$-duality symmetry when the target space has Abelian isometries. A generalization of $T$-duality, where the isometry group is non-Abelian, is known as non-Abelian $T$-duality, which works well as a solution-generating technique in supergravity. In this paper we describe...

Full description

Saved in:
Bibliographic Details
Published inProgress of theoretical and experimental physics Vol. 2019; no. 7
Main Author Sakatani, Yuho
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract String theory has $T$-duality symmetry when the target space has Abelian isometries. A generalization of $T$-duality, where the isometry group is non-Abelian, is known as non-Abelian $T$-duality, which works well as a solution-generating technique in supergravity. In this paper we describe non-Abelian $T$-duality as a kind of $\text{O}(D,D)$ transformation when the isometry group acts without isotropy. We then provide a duality transformation rule for the Ramond–Ramond fields by using the technique of double field theory (DFT). We also study a more general class of solution-generating technique, the Poisson–Lie (PL) $T$-duality or $T$-plurality. We describe the PL $T$-plurality as an $\text{O}(n,n)$ transformation and clearly show the covariance of the DFT equations of motion by using the gauged DFT. We further discuss the PL $T$-plurality with spectator fields, and study an application to the $\text{AdS}_5\times\text{S}^5$ solution. The dilaton puzzle known in the context of the PL $T$-plurality is resolved with the help of DFT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2050-3911
2050-3911
DOI:10.1093/ptep/ptz071