Relationship between white matter fractional anisotropy and other indices of cerebral health in normal aging: Tract-based spatial statistics study of aging

White matter (WM) fractional anisotropy (FA) is thought to be related to WM integrity and decline in FA is often used as an index of decreasing WM health. However, the relationship of FA to other structural indices of cerebral health has not been well studied. We hypothesized that the decline in WM...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 35; no. 2; pp. 478 - 487
Main Authors Kochunov, P., Thompson, P.M., Lancaster, J.L., Bartzokis, G., Smith, S., Coyle, T., Royall, D.R., Laird, A., Fox, P.T.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2007
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
DOI10.1016/j.neuroimage.2006.12.021

Cover

More Information
Summary:White matter (WM) fractional anisotropy (FA) is thought to be related to WM integrity and decline in FA is often used as an index of decreasing WM health. However, the relationship of FA to other structural indices of cerebral health has not been well studied. We hypothesized that the decline in WM health will be associated with changes in several other indices of cerebral health. In this manuscript we studied the correlation between whole-brain/hemispheric/corpus callosum FA and gray matter (GM) thickness, sulcal span, and the volume of T2-hyperintense WM in a group of 31 healthy aging individuals (12 males/19 females) aged 57–82 years old. Individual subjects' FA measures were calculated from diffusion tracing imaging (DTI) data using tract-based spatial statistics—an approach specifically designed and validated for voxel-wise multi-subject FA analysis. Age-controlled correlation analysis showed that whole-brain average FA values were significantly and positively correlated with the subject's average GM thickness and negatively correlated with hyperintense WM volume. Intra-hemispheric correlations between FA and other measures of cerebral health had generally greater effect sizes than inter-hemispheric correction, with correlation between left FA and left GM thickness being the most significant (r=0.6, p<0.01). Regional analysis of FA values showed that late-myelinating fiber tracts of the genu of corpus callosum had higher association with other cerebral health indices. These data are consistent with the hypothesis that late-myelinating regions of the brain bear the brunt of age-related degenerative changes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2006.12.021