Metabotropic Glutamate Subtype 5 Receptors Are Quantified in the Human Brain with a Novel Radioligand for PET

We developed a radioligand, 3-fluoro-5-(2-(2-(18)F-(fluoromethyl)thiazol-4-yl)ethynyl)benzonitrile ((18)F-SP203), for metabotropic glutamate subtype 5 (mGluR5) receptors that showed both promising (high specific binding) and problematic (defluorination) imaging characteristics in animals. The purpos...

Full description

Saved in:
Bibliographic Details
Published inJournal of Nuclear Medicine Vol. 49; no. 12; pp. 2042 - 2048
Main Authors Brown, Amira K, Kimura, Yasuyuki, Zoghbi, Sami S, Simeon, Fabrice G, Liow, Jeih-San, Kreisl, William C, Taku, Andrew, Fujita, Masahiro, Pike, Victor W, Innis, Robert B
Format Journal Article
LanguageEnglish
Published United States Soc Nuclear Med 01.12.2008
Society of Nuclear Medicine
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We developed a radioligand, 3-fluoro-5-(2-(2-(18)F-(fluoromethyl)thiazol-4-yl)ethynyl)benzonitrile ((18)F-SP203), for metabotropic glutamate subtype 5 (mGluR5) receptors that showed both promising (high specific binding) and problematic (defluorination) imaging characteristics in animals. The purposes of this initial evaluation in human subjects were to determine whether (18)F-SP203 is defluorinated in vivo (as measured by uptake of radioactivity in the skull) and to determine whether the uptake in the brain can be quantified as distribution volume relative to concentrations of (18)F-SP203 in plasma. Seven healthy subjects were injected with (18)F-SP203 (323 +/- 87 MBq) and scanned over 5 h, with rest periods outside the camera. The concentrations of (18)F-SP203, separated from radiometabolites, were measured in arterial plasma. The skull was difficult to visualize on PET images in the initial 2 h, because of high radioactivity in the brain. Although radioactivity in the skull and adjacent cortex showed some cross-contamination, the concentration of radioactivity in the skull was less than half of that in the adjacent cortex during the initial 2 h. Modeling of regional brain and plasma data showed that a 2-tissue-compartment model was superior to a 1-tissue-compartment model, consistent with measurable amounts of both receptor-specific and nonspecific binding. The concentrations of activity in the brain measured with PET were consistently greater than the modeled values at late but not early time points and may well have been caused by the slow accumulation of radiometabolites in the brain. To determine an adequate time for more accurate measurement of distribution volume, we selected a scan duration (i.e., 2 h) associated with maximal or near-maximal identifiability. Distribution volume was well identified ( approximately 2%) by only 2 h (and even just 1) of image acquisition. This initial evaluation of (18)F-SP203 in healthy human subjects showed that defluorination is relatively small and that brain uptake can be robustly calculated as distribution volume. The values of distribution volume were well identified and had relatively small variation in this group of 7 subjects. These results suggest that (18)F-SP203 will have good sensitivity to measure mGluR5 receptors for both within-subject studies (e.g., receptor occupancy) and between-subject studies (e.g., patients vs. healthy subjects).
ISSN:0161-5505
1535-5667
2159-662X
DOI:10.2967/jnumed.108.056291