Determination of human FaFg of polyphenols using allometric scaling

Certain polyphenols exhibit low permeability; precise prediction of their intestinal absorption is important for understanding internal exposure in humans. Intestinal availability, which represents the fraction of administered compounds that reach the portal blood (FaFg), is calculated by dividing b...

Full description

Saved in:
Bibliographic Details
Published inJournal of toxicological sciences Vol. 47; no. 10; pp. 409 - 420
Main Authors Kikuchi, Takuya, Shigemura, Shunta, Ito, Yuichi, Saito, Kazutoshi
Format Journal Article
LanguageEnglish
Japanese
Published Suita The Japanese Society of Toxicology 2022
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Certain polyphenols exhibit low permeability; precise prediction of their intestinal absorption is important for understanding internal exposure in humans. Intestinal availability, which represents the fraction of administered compounds that reach the portal blood (FaFg), is calculated by dividing bioavailability (F) by hepatic availability (Fh), and F is obtained from pharmacokinetic data from both intravenous (i.v.) and oral (p.o.) administration. However, human FaFg of polyphenols is hardly reported, as human i.v. data are extremely scarce. In this study, we developed an estimation method for FaFg of polyphenols in humans based on the extrapolation of rat clearance using allometric scaling (allometric scaling-based FaFg calculation method, AS- FaFgCM). First, for quercetin, for which human i.v. data have been reported, we compared the FaFg obtained by AS-FaFgCM with the traditional approach using human i.v. and p.o. data. Less than two-fold difference in FaFg values was observed between the two approaches. Next, we obtained FaFg of structurally diverse polyphenols (genistein, baicalein, resveratrol, and epicatechin) using AS-FaFgCM, demonstrating that all of them were poorly absorbable. Furthermore, to utilize the pharmacokinetic data of the total concentration, including aglycones and metabolites, we modified the AS-FaFgCM to focus on their excretion. The FaFg value of naringenin was obtained using modified AS-FaFgCM and was nearly equal to that of baicalein, a structural isomer of naringenin. This study provides quantitative information on the intestinal absorption of polyphenols using comprehensive estimation methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0388-1350
1880-3989
DOI:10.2131/jts.47.409