Financial model calibration using consistency hints
We introduce a technique for forcing the calibration of a financial model to produce valid parameters. The technique is based on learning from hints. It converts simple curve fitting into genuine calibration, where broad conclusions can be inferred from parameter values. The technique augments the e...
Saved in:
Published in | IEEE transactions on neural networks Vol. 12; no. 4; pp. 791 - 808 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We introduce a technique for forcing the calibration of a financial model to produce valid parameters. The technique is based on learning from hints. It converts simple curve fitting into genuine calibration, where broad conclusions can be inferred from parameter values. The technique augments the error function of curve fitting with consistency hint error functions based on the Kullback-Leibler distance. We introduce an efficient EM-type optimization algorithm tailored to this technique. We also introduce other consistency hints, and balance their weights using canonical errors. We calibrate the correlated multifactor Vasicek model of interest rates, and apply it successfully to Japanese Yen swaps market and US dollar yield market. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1045-9227 1941-0093 |
DOI: | 10.1109/72.935092 |