Cloning and analysis of the shiA gene, which encodes the shikimate transport system of Escherichia coli K-12

In Escherichia coli K-12, the shiA gene is involved in the uptake of shikimate. This gene has been cloned and its nucleotide sequence determined. The gene is predicted to encode a protein of 438 amino acids and lies adjacent to the amn gene. The hydropathy profile and the amino acid sequence indicat...

Full description

Saved in:
Bibliographic Details
Published inGene Vol. 209; no. 1; pp. 185 - 192
Main Authors Whipp, M.J, Camakaris, H, Pittard, A.J
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 16.03.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In Escherichia coli K-12, the shiA gene is involved in the uptake of shikimate. This gene has been cloned and its nucleotide sequence determined. The gene is predicted to encode a protein of 438 amino acids and lies adjacent to the amn gene. The hydropathy profile and the amino acid sequence indicate that the ShiA protein is a polytopic membrane protein that shows a homology with members of the major facilitator superfamily of transport proteins. Recombining an inactive form of the cloned gene into the chromosome creates mutants unable to transport shikimate. Introducing a wild-type gene on a multicopy plasmid into a shiA mutant restores the ability to transport shikimate. When this multicopy shiA plasmid is introduced into an aroE strain, this strain is now able to grow with shikimate as the aromatic supplement, consistent with the notion that dehydroshikimate (DHS) accumulated in an aroE strain prevents uptake of shikimate by competition. Expression of the shiA gene does not appear to be regulated by the TyrR protein, a repressor/activator that controls the expression of other genes involved with the biosynthesis or transport of the aromatic amino acids.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0378-1119
1879-0038
DOI:10.1016/S0378-1119(98)00043-2