Dynamic fuzzy neural networks-a novel approach to function approximation

In this paper, an architecture of dynamic fuzzy neural networks (D-FNN) implementing Takagi-Sugeno-Kang (TSK) fuzzy systems based on extended radial basis function (RBF) neural networks is proposed. A novel learning algorithm based on D-FNN is also presented. The salient characteristics of the algor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man and cybernetics. Part B, Cybernetics Vol. 30; no. 2; pp. 358 - 364
Main Authors Wu, S, Er, M J
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2000
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, an architecture of dynamic fuzzy neural networks (D-FNN) implementing Takagi-Sugeno-Kang (TSK) fuzzy systems based on extended radial basis function (RBF) neural networks is proposed. A novel learning algorithm based on D-FNN is also presented. The salient characteristics of the algorithm are: 1) hierarchical on-line self-organizing learning is used; 2) neurons can be recruited or deleted dynamically according to their significance to the system's performance; and 3) fast learning speed can be achieved. Simulation studies and comprehensive comparisons with some other learning algorithms demonstrate that a more compact structure with higher performance can be achieved by the proposed approach.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1083-4419
1941-0492
DOI:10.1109/3477.836384