Fuzzy modeling with multivariate membership functions: gray-box identification and control design
A novel framework for fuzzy modeling and model-based control design is described. The fuzzy model is of the Takagi-Sugeno (TS) type with constant consequents. It uses multivariate antecedent membership functions obtained by Delaunay triangulation of their characteristic points. The number and positi...
Saved in:
Published in | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics Vol. 31; no. 5; pp. 755 - 767 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A novel framework for fuzzy modeling and model-based control design is described. The fuzzy model is of the Takagi-Sugeno (TS) type with constant consequents. It uses multivariate antecedent membership functions obtained by Delaunay triangulation of their characteristic points. The number and position of these points are determined by an iterative insertion algorithm. Constrained optimization is used to estimate the consequent parameters, where the constraints are based on control-relevant a priori knowledge about the modeled process. Finally, methods for control design through linearization and inversion of this model are developed. The proposed techniques are demonstrated by means of two benchmark examples: identification of the well-known Box-Jenkins gas furnace and inverse model-based control of a pH process. The obtained results are compared with results from the literature. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1083-4419 1941-0492 |
DOI: | 10.1109/3477.956037 |