Evaluation of deep learning-based deliverable VMAT plan generated by prototype software for automated planning for prostate cancer patients

Abstract This study aims to evaluate the dosimetric accuracy of a deep learning (DL)-based deliverable volumetric arc radiation therapy (VMAT) plan generated using DL-based automated planning assistant system (AIVOT, prototype version) for patients with prostate cancer. The VMAT data (cliDose) of 68...

Full description

Saved in:
Bibliographic Details
Published inJournal of radiation research Vol. 64; no. 5; pp. 842 - 849
Main Authors Kadoya, Noriyuki, Kimura, Yuto, Tozuka, Ryota, Tanaka, Shohei, Arai, Kazuhiro, Katsuta, Yoshiyuki, Shimizu, Hidetoshi, Sugai, Yuto, Yamamoto, Takaya, Umezawa, Rei, Jingu, Keiichi
Format Journal Article
LanguageEnglish
Published Oxford University Press 22.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract This study aims to evaluate the dosimetric accuracy of a deep learning (DL)-based deliverable volumetric arc radiation therapy (VMAT) plan generated using DL-based automated planning assistant system (AIVOT, prototype version) for patients with prostate cancer. The VMAT data (cliDose) of 68 patients with prostate cancer treated with VMAT treatment (70–74 Gy/28–37 fr) at our hospital were used (n = 55 for training and n = 13 for testing). First, a HD-U-net-based 3D dose prediction model implemented in AIVOT was customized using the VMAT data. Thus, a predictive VMAT plan (preDose) comprising AIVOT that predicted the 3D doses was generated. Second, deliverable VMAT plans (deliDose) were created using AIVOT, the radiation treatment planning system Eclipse (version 15.6) and its vender-supplied objective functions. Finally, we compared these two estimated DL-based VMAT treatment plans—i.e. preDose and deliDose—with cliDose. The average absolute dose difference of all DVH parameters for the target tissue between cliDose and deliDose across all patients was 1.32 ± 1.35% (range: 0.04–6.21%), while that for all the organs at risks was 2.08 ± 2.79% (range: 0.00–15.4%). The deliDose was superior to the cliDose in all DVH parameters for bladder and rectum. The blinded plan scoring of deliDose and cliDose was 4.54 ± 0.50 and 5.0 ± 0.0, respectively (All plans scored ≥4 points, P = 0.03.) This study demonstrated that DL-based deliverable plan for prostate cancer achieved the clinically acceptable level. Thus, the AIVOT software exhibited a potential for automated planning with no intervention for patients with prostate cancer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
N. Kadoya and Y. Kimura contributed equally to this manuscript.
ISSN:0449-3060
1349-9157
DOI:10.1093/jrr/rrad058