Increasing bulk photovoltaic current by strain tuning

Photovoltaic phenomena are widely exploited not only for primary energy generation but also in photocatalytic, photoelectrochemistry, or optoelectronic applications. In contrast to the interface-based photovoltaic effect of semiconductors, the anomalous or bulk photovoltaic effect in ferroelectrics...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 5; no. 3; p. eaau9199
Main Authors Nadupalli, Shankari, Kreisel, Jens, Granzow, Torsten
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Photovoltaic phenomena are widely exploited not only for primary energy generation but also in photocatalytic, photoelectrochemistry, or optoelectronic applications. In contrast to the interface-based photovoltaic effect of semiconductors, the anomalous or bulk photovoltaic effect in ferroelectrics is not bound by the Shockley-Queisser limit and, thus, can potentially reach high efficiencies. Here, we observe in the example of an Fe-doped LiNbO bulk single crystal the existence of a purely intrinsic "piezophotovoltaic" effect that leads to a linear increase in photovoltaic current density. The increase reaches 75% under a low uniaxial compressive stress of 10 MPa, corresponding to a strain of only 0.005%. The physical origin and symmetry properties of the effect are investigated, and its potential for strain-tuned efficiency increase in nonconventional photovoltaic materials is presented.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aau9199