Ingestion of Bean Leaves Reduces Metabolic Complications and Restores Intestinal Integrity in C57BL/6 Mice with Obesity Induced by a High-Fat and High-Fructose Diet

Consumption of foods with fiber and compounds can promote gastrointestinal health and reduce obesity complications. Therefore, treatment with common bean leaves (BL) against obesity was evaluated in mice with a high-fat and high-fructose diet (HFFD) for 14 weeks. The bromatological and phytochemical...

Full description

Saved in:
Bibliographic Details
Published inNutrients Vol. 16; no. 3; p. 367
Main Authors Ocampo-Anguiano, Perla Viridiana, Victoria-Ruiz, Laura Lizeth, Reynoso-Camacho, Rosalía, Olvera-Ramírez, Andrea Margarita, Rocha-Guzmán, Nuria Elizabeth, Ramos-Gómez, Minerva, Ahumada-Solórzano, Santiaga Marisela
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Consumption of foods with fiber and compounds can promote gastrointestinal health and reduce obesity complications. Therefore, treatment with common bean leaves (BL) against obesity was evaluated in mice with a high-fat and high-fructose diet (HFFD) for 14 weeks. The bromatological and phytochemical characterization of BL were determined. Afterwards, the animals were supplemented with BL (10%) or a standard diet (SD) as a strategy to encourage a healthy diet for 12 additional weeks. Changes in body composition, lipid profile, and intestinal integrity were analyzed. The characterization of BL stood out for its content of 27.2% dietary fiber, total phenolics (475.04 mg/100 g), and saponins (2.2 mg/100 g). The visceral adipose tissue (VAT) decreased in the BL group by 52% compared to the HFFD group. Additionally, triglyceride levels were 23% lower in the BL consumption group compared to the HFFD group. The improvement in lipid profile was attributed to the 1.77-fold higher fecal lipid excretion in the BL consumption group compared to the HFFD group and the inhibition of pancreatic lipase by 29%. Furthermore, BL supplementation reduced the serum levels of IL-6 (4.4-fold) and FITC-dextran by 50% compared with those in the HFFD group. Metabolic endotoxemia was inhibited after BL supplementation (-33%) compared to the HFFD group. BL consumption as a treatment in obese mice reduces adipose tissue accumulation and improves the lipid profile. Furthermore, we report for the first time that BL consumption improves intestinal integrity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2072-6643
2072-6643
DOI:10.3390/nu16030367