Mesophyll Cells Are the Main Site of Abscisic Acid Biosynthesis in Water-Stressed Leaves

The hormone abscisic acid (ABA) plays a critical role in enhancing plant survival during water deficit. Recent molecular evidence suggests that ABA is synthesized in the phloem companion cells and guard cells. However, the nature of cell turgor and water status in these two cell types cannot easily...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 177; no. 3; pp. 911 - 917
Main Authors McAdam, Scott A.M., Brodribb, Timothy J.
Format Journal Article
LanguageEnglish
Published United States American Society of Plant Biologists 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The hormone abscisic acid (ABA) plays a critical role in enhancing plant survival during water deficit. Recent molecular evidence suggests that ABA is synthesized in the phloem companion cells and guard cells. However, the nature of cell turgor and water status in these two cell types cannot easily account for the rapid, water status-triggered ABA biosynthesis observed in leaves. Here, we utilize the unique foliar anatomies of an angiosperm (Hakea lissosperma) and four conifer species (Saxegothaea conspicua, Podocarpus latifolius, Cephalotaxus harringtonii, and Amentotaxus formosana) in which the mesophyll can be isolated from the vascular tissue to identify the main site of ABA biosynthesis in water-stressed leaves. In all five species tested, considerable ABA biosynthesis occurred in mesophyll tissue that had been separated from vascular tissue. In addition, the removal of the epidermis from the mesophyll in two conifer species had no impact on the observed increase in ABA levels under water deficit. Our results suggest that mesophyll cells are the predominant location of water deficit-triggered ABA biosynthesis in the leaf.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.17.01829