Satellite observation of Brazil Current inshore thermal front in the SW South Atlantic: Space/time variability and sea surface temperatures

A data set of 199 sea surface temperature maps derived from the Advanced Very High Resolution Radiometer for the period 2000–2002 was processed to derive the position of the surface inshore thermal front of the Brazil Current (BCIF) in the SE Brazilian coastal and oceanic area. After the derivation...

Full description

Saved in:
Bibliographic Details
Published inContinental shelf research Vol. 29; no. 17; pp. 2061 - 2068
Main Authors Lorenzzetti, João A., Stech, Jose L., Mello Filho, Wilson L., Assireu, Arcilan T.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 30.09.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A data set of 199 sea surface temperature maps derived from the Advanced Very High Resolution Radiometer for the period 2000–2002 was processed to derive the position of the surface inshore thermal front of the Brazil Current (BCIF) in the SE Brazilian coastal and oceanic area. After the derivation of the position of the BC front for each image, the ensemble of digital frontal vectors was processed using the algorithm of frontal density (FD). For each 5′×5′ cell in the domain the calculated FD provided an index expressing the presence and persistence of the front in the area or the probability of finding the front in the region. In the paper we present the results of the FD analysis to get a better view of the space and time variability of the BC front in the region. The highest values of FD were in general observed close to or at the shelf break zone (between 200 and 1000 m isobaths). From 20°S to 23°S there is a tendency of BCIF to be positioned over the outer shelf, inshore of the 200 m isobaths. SE of Cape Sao Tome and S of Cape Frio it was observed a bimodal spatial distribution of highest FD caused by the presence of two semi-permanent frontal eddies. After moving offshore near Cape Frio, the BCIF tends to return to the shelf break zone south of 24°S probably due to a potential vorticity conservation mechanism. The position of the highest FD values calculated for different seasons confirms previous studies in that BCIF is closer to the coast during the summer and furthest offshore in the winter. Statistical analysis of the SST data gave for the BCIF an average SST gradient of 0.31°C km −1 with a standard deviation of 0.15°C km −1. A mean frontal width of 6 km was inferred from the average SST gradient and typical temperatures near the front at both sides, at outer shelf and in the BC itself. A Weibull probability density function can be fitted to describe the BCIF SST gradients with scale factor c=0.3460°C km −1 and shape factor k=2.1737. The BCIF SST gradient showed a seasonal variability with the smallest gradients in summer (~0.24 °C km −1) and the highest in autumn (~0.33 °C km −1). Using a three harmonic Fourier fit for the SST field near the BCIF, at the outer shelf and at interior of BC, it was possible to derive an analytical model for the time variability of the SST gradient of BCIF.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0278-4343
1873-6955
DOI:10.1016/j.csr.2009.07.011