Microstructure, Mechanical Properties and Wear Behaviors of Ultrafine-Grain WC-Based Cermets with Different Binder Phases Fabricated by Spark Plasma Sintering

In this work, to explore potential substitutions for the Co binder phase, ultrafine-grain WC-based cermets with various binder phases of Co, Ni and AlCoCrNiFeCu HEA were prepared using the SPS method. Based on SPS, WC-based cermets were fabricated at higher speed, showing fine carbide particles less...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 17; no. 3; p. 659
Main Authors Xu, Kangwei, Wang, Zhe, Cao, Peipei, Peng, Xiangyang, Chen, Chao, Liu, Qingsong, Xie, Shufeng, Wu, Xiaoyu, Jian, Yongxin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, to explore potential substitutions for the Co binder phase, ultrafine-grain WC-based cermets with various binder phases of Co, Ni and AlCoCrNiFeCu HEA were prepared using the SPS method. Based on SPS, WC-based cermets were fabricated at higher speed, showing fine carbide particles less than 410 μm. The microstructure, mechanical properties and wear properties were systematically evaluated. By comparison, the grain size of WC was the lowest for WC-10Co, while WC-10 HEA cermet held the coarsest WC particles. The hardness and fracture toughness of WC-10 HEA were the best among all three samples, with values of 93.2 HRA and 11.3 MP·m . However, the bending strength of WC-10HEA was about 56.1% lower than that of WC-10Co, with a value of 1349.6 MPa. The reduction in bending strength is attributed to the lower density, formation of a newly Cr-Al rich phase and coarser WC grains. In dry sliding wear conditions, WC-10 HEA showed the lowest wear rate (0.98 × 10 mm /(N·m)) and coefficient of friction (0.19), indicating the best wear resistance performance. This reveals that WC-based cermet with a HEA binder phase has superior wear performance due to the higher hardness and good self-lubricating effect of the wear products.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17030659