Realization of a discrete time crystal on 57 qubits of a quantum computer

Unconventional dynamical phases that violate ergodicity have been a subject of extensive research in recent years. A periodically driven system is naively expected to lose all memory of its initial state due to thermalization, yet this can be avoided in the presence of many-body localization. A disc...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 8; no. 9; p. eabm7652
Main Authors Frey, Philipp, Rachel, Stephan
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 04.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Unconventional dynamical phases that violate ergodicity have been a subject of extensive research in recent years. A periodically driven system is naively expected to lose all memory of its initial state due to thermalization, yet this can be avoided in the presence of many-body localization. A discrete time crystal represents a driven system whose local observables spontaneously break time translation symmetry and retain memory of the initial state indefinitely. Here, we report the observation of a discrete time crystal on a chain consisting of 57 superconducting qubits on a state-of-the-art quantum computer. We probe random initial states and compare the cases of vanishing and finite disorder to distinguish many-body localization from prethermal dynamics. We further report results on the dynamical phase transition between the discrete time crystal and a thermal regime, which is observed via critical fluctuations in the system’s subharmonic frequency response and a substantial speedup of spin depolarization. The time crystal phase has been observed, and a first step toward establishing a dynamical phase diagram has been obtained.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.abm7652