The effect of metals on zeolite crystallization kinetics with relevance to nuclear waste glass corrosion
Geologic disposal of vitrified radioactive material is planned in several countries, but there are remaining uncertainties related to the long-term stability of glass exposed to groundwater. Specifically, the crystallization of aluminosilicate zeolite minerals can accelerate the rate at which glass...
Saved in:
Published in | Npj Materials degradation Vol. 7; no. 1; pp. 4 - 7 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.01.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Geologic disposal of vitrified radioactive material is planned in several countries, but there are remaining uncertainties related to the long-term stability of glass exposed to groundwater. Specifically, the crystallization of aluminosilicate zeolite minerals can accelerate the rate at which glass corrodes and radioactive material is released into the biosphere. In this study, we identify elemental species that may accelerate or suppress zeolite formation using a protocol to examine their effects on zeolite synthesis over a three-day duration. Our results are consistent with previous works demonstrating glass corrosion acceleration in the presence of calcium. Furthermore, we identify two elements—tin and lithium—as inhibitors of zeolite P2 (gismondine, or GIS type) nucleation and, thus, promising components for promoting the long-term durability of glass waste forms. |
---|---|
Bibliography: | USDOE |
ISSN: | 2397-2106 2397-2106 |
DOI: | 10.1038/s41529-022-00310-9 |