Generation of multiple ultrastable optical frequency combs from an all-fiber photonic platform

Frequency-stabilized optical frequency combs have created many high-precision applications. Accurate timing, ultralow phase noise, and narrow linewidth are prerequisites for achieving the ultimate performance of comb-based systems. Ultrastable cavity-based comb-noise stabilization methods have enabl...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 6; no. 13; p. eaax4457
Main Authors Kwon, Dohyeon, Jeon, Igju, Lee, Won-Kyu, Heo, Myoung-Sun, Kim, Jungwon
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 27.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Frequency-stabilized optical frequency combs have created many high-precision applications. Accurate timing, ultralow phase noise, and narrow linewidth are prerequisites for achieving the ultimate performance of comb-based systems. Ultrastable cavity-based comb-noise stabilization methods have enabled sub-10 -level frequency instability. However, these methods are complex and alignment sensitive, and their use has been mostly confined to advanced metrology laboratories. Here, we have established a simple, compact, alignment-free, and potentially low-cost all-fiber photonics-based stabilization method for generating multiple ultrastable combs. The achieved performance includes 1-femtosecond timing jitter, few times 10 -level frequency instability, and <5-hertz linewidth, rivalling those of cavity-stabilized combs. This method features flexibility in configuration: As a representative example, two combs were stabilized with 180-hertz repetition rate difference and ~1-hertz relative linewidth and could be used as an ultrastable, octave-spanning dual-comb spectroscopy source. The demonstrated method constitutes a mechanically robust and reconfigurable tool for generating multiple ultrastable combs suitable for field applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aax4457