Penalized partially linear models using sparse representations with an application to fMRI time series

In this paper, we consider modeling the nonparametric component in partially linear models (PLMs) using linear sparse representations, e.g., wavelet expansions. Two types of representations are investigated, namely, orthogonal bases (complete) and redundant overcomplete expansions. For bases, we int...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 53; no. 9; pp. 3436 - 3448
Main Authors Fadili, J.M., Bullmore, E.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we consider modeling the nonparametric component in partially linear models (PLMs) using linear sparse representations, e.g., wavelet expansions. Two types of representations are investigated, namely, orthogonal bases (complete) and redundant overcomplete expansions. For bases, we introduce a regularized estimator of the nonparametric part. The important contribution here is that the nonparametric part can be parsimoniously estimated by choosing an appropriate penalty function for which the hard and soft thresholding estimators are special cases. This allows us to represent in an effective manner a broad class of signals, including stationary and/or nonstationary signals and avoids excessive bias in estimating the parametric component. We also give a fast estimation algorithm. The method is then generalized to handle the case of overcomplete representations. A large-scale simulation study is conducted to illustrate the finite sample properties of the estimator. The estimator is finally applied to real neurophysiological functional magnetic resonance imaging (MRI) data sets that are suspected to contain both smooth and transient drift features.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2005.853207