A Genetically Engineered Escherichia coli for Potential Utilization in Fungal Smut Disease Control

, the basidiomycetous fungus that causes sugarcane smut and leads to severe losses in sugarcane quantity and quality, undergoes sexual mating to form dikaryotic hyphae capable of invading the host cane. Therefore, suppressing dikaryotic hyphae formation would potentially be an effective way to preve...

Full description

Saved in:
Bibliographic Details
Published inMicroorganisms (Basel) Vol. 11; no. 6; p. 1564
Main Authors Cui, Guobing, Bi, Xinping, Lu, Shan, Jiang, Zide, Deng, Yizhen
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.06.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:, the basidiomycetous fungus that causes sugarcane smut and leads to severe losses in sugarcane quantity and quality, undergoes sexual mating to form dikaryotic hyphae capable of invading the host cane. Therefore, suppressing dikaryotic hyphae formation would potentially be an effective way to prevent host infection by the smut fungus, and the following disease symptom developments. The phytohormone methyl jasmonate (MeJA) has been shown to induce plant defenses against insects and microbial pathogens. In this study, we will verify that the exogenous addition of MeJA-suppressed dikaryotic hyphae formation in and under in vitro culture conditions, and the maize smut symptom caused by could be effectively suppressed by MeJA in a pot experiment. We constructed an -expressing plant gene, encoding a jasmonic acid carboxyl methyl transferase that catalyzes conversion from jasmonic acid (JA) to MeJA. By GC-MS, we will confirm that the transformed , designated as the pJMT strain, was able to produce MeJA in the presence of JA and S-adenosyl-L-methionine (SAM as methyl donor). Furthermore, the pJMT strain was able to suppress filamentous growth under in vitro culture conditions. It waits to further optimize expression under field conditions in order to utilize the pJMT strain as a biocontrol agent (BCA) of sugarcane smut disease. Overall, our study provides a potentially novel method for controlling crop fungal diseases by boosting phytohormone biosynthesis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms11061564