Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography
Understanding occupants’ thermal sensation and comfort is essential to defining the operational settings for Heating, Ventilation and Air Conditioning (HVAC) systems in buildings. Due to the continuous impact of human and environmental factors, occupants’ thermal sensation and comfort level can chan...
Saved in:
Published in | Energy and buildings Vol. 176; pp. 246 - 261 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.10.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Understanding occupants’ thermal sensation and comfort is essential to defining the operational settings for Heating, Ventilation and Air Conditioning (HVAC) systems in buildings. Due to the continuous impact of human and environmental factors, occupants’ thermal sensation and comfort level can change over time. Thus, to dynamically control the environment, thermal comfort should be monitored in real time. This paper presents a novel non-intrusive infrared thermography framework to estimate an occupant's thermal comfort level by measuring skin temperature collected from different facial regions using low-cost thermal cameras. Unlike existing methods that rely on placing sensors directly on humans for skin temperature measurement, the proposed framework is able to detect the presence of occupants, extract facial regions, measure skin temperature features, and interpret thermal comfort conditions with minimal interruption of the building occupants. The method is validated by collecting thermal comfort data from a total of twelve subjects under cooling, heating and steady-state experiments. The results demonstrate that ears, nose and cheeks are most indicative of thermal comfort and the proposed framework can be used to assess occupants’ thermal comfort with an average accuracy of 85%. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0378-7788 1872-6178 |
DOI: | 10.1016/j.enbuild.2018.07.025 |