Construction of a pH-responsive, ultralow-dose triptolide nanomedicine for safe rheumatoid arthritis therapy
Rheumatoid arthritis (RA) is a chronicautoimmune disease, marked by joint swelling and pain, articular synovial hyperplasia, as well as cartilage and bone destruction. Triptolide (TP) is an anti-inflammatory molecule but its use to treat RA is limited due to poor solubility and extremely high toxici...
Saved in:
Published in | Acta biomaterialia Vol. 121; pp. 541 - 553 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Rheumatoid arthritis (RA) is a chronicautoimmune disease, marked by joint swelling and pain, articular synovial hyperplasia, as well as cartilage and bone destruction. Triptolide (TP) is an anti-inflammatory molecule but its use to treat RA is limited due to poor solubility and extremely high toxicity. In this study, by encapsulating TP into a star-shaped amphiphilic block copolymer, POSS-PCL-b-PDMAEMA, we engineered a pH-sensitive TP-loaded nanomedicine (TP@NPs) to simultaneously reduce the toxicity of TP and improve its therapeutic efficacy. TP@NPs shows a uniform spherical structure with a hydrodynamic diameter of ~92 nm and notable pH-responsiveness. In vitro TP@NPs showed reduced cytotoxicity and cell apoptosis of treated RAW264.7 cells compared to free TP. And in vivo intravenous injection of indocyanine green-labeled NPs into a collagen-induced arthritis model in mice showed that the engineered compound had potent pharmacokinetic and pharmacodynamic profiles, while exhibiting significant cartilage-protective and anti-inflammatory effects with a better efficacy and neglible systemic toxicity even at an ultralow dose compared to free TP. These results suggest that TP@NPs may be a safe and effective therapy for RA and other autoimmune diseases.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1742-7061 1878-7568 1878-7568 |
DOI: | 10.1016/j.actbio.2020.11.027 |