Widespread transcriptional pausing and elongation control at enhancers

Regulation by gene-distal enhancers is critical for cell type-specific and condition-specific patterns of gene expression. Thus, to understand the basis of gene activity in a given cell type or tissue, we must identify the precise locations of enhancers and functionally characterize their behaviors....

Full description

Saved in:
Bibliographic Details
Published inGenes & development Vol. 32; no. 1; pp. 26 - 41
Main Authors Henriques, Telmo, Scruggs, Benjamin S., Inouye, Michiko O., Muse, Ginger W., Williams, Lucy H., Burkholder, Adam B., Lavender, Christopher A., Fargo, David C., Adelman, Karen
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.01.2018
Subjects
Online AccessGet full text
ISSN0890-9369
1549-5477
1549-5477
DOI10.1101/gad.309351.117

Cover

Loading…
More Information
Summary:Regulation by gene-distal enhancers is critical for cell type-specific and condition-specific patterns of gene expression. Thus, to understand the basis of gene activity in a given cell type or tissue, we must identify the precise locations of enhancers and functionally characterize their behaviors. Here, we demonstrate that transcription is a nearly universal feature of enhancers in Drosophila and mammalian cells and that nascent RNA sequencing strategies are optimal for identification of both enhancers and superenhancers. We dissect the mechanisms governing enhancer transcription and discover remarkable similarities to transcription at protein-coding genes. We show that RNA polymerase II (RNAPII) undergoes regulated pausing and release at enhancers. However, as compared with mRNA genes, RNAPII at enhancers is less stable and more prone to early termination. Furthermore, we found that the level of histone H3 Lys4 (H3K4) methylation at enhancers corresponds to transcriptional activity such that highly active enhancers display H3K4 trimethylation rather than the H3K4 monomethylation considered a hallmark of enhancers. Finally, our work provides insights into the unique characteristics of superenhancers, which stimulate high-level gene expression through rapid pause release; interestingly, this property renders associated genes resistant to the loss of factors that stabilize paused RNAPII.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0890-9369
1549-5477
1549-5477
DOI:10.1101/gad.309351.117