Design and thermodynamic analysis of a pathway enabling anaerobic production of poly-3-hydroxybutyrate in Escherichia coli

Utilizing anaerobic metabolisms for the production of biotechnologically relevant products presents potential advantages, such as increased yields and reduced energy dissipation. However, lower energy dissipation may indicate that certain reactions are operating closer to their thermodynamic equilib...

Full description

Saved in:
Bibliographic Details
Published inSynthetic and systems biotechnology Vol. 8; no. 4; pp. 629 - 639
Main Authors Olavarria, Karel, Becker, Marco V., Sousa, Diana Z., van Loosdrecht, Mark C.M., Wahl, S. Aljoscha
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2023
KeAi Publishing
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Utilizing anaerobic metabolisms for the production of biotechnologically relevant products presents potential advantages, such as increased yields and reduced energy dissipation. However, lower energy dissipation may indicate that certain reactions are operating closer to their thermodynamic equilibrium. While stoichiometric analyses and genetic modifications are frequently employed in metabolic engineering, the use of thermodynamic tools to evaluate the feasibility of planned interventions is less documented. In this study, we propose a novel metabolic engineering strategy to achieve an efficient anaerobic production of poly-(R)-3-hydroxybutyrate (PHB) in the model organism Escherichia coli. Our approach involves re-routing of two-thirds of the glycolytic flux through non-oxidative glycolysis and coupling PHB synthesis with NADH re-oxidation. We complemented our stoichiometric analysis with various thermodynamic approaches to assess the feasibility and the bottlenecks in the proposed engineered pathway. According to our calculations, the main thermodynamic bottleneck are the reactions catalyzed by the acetoacetyl-CoA β-ketothiolase (EC 2.3.1.9) and the acetoacetyl-CoA reductase (EC 1.1.1.36). Furthermore, we calculated thermodynamically consistent sets of kinetic parameters to determine the enzyme amounts required for sustaining the conversion fluxes. In the case of the engineered conversion route, the protein pool necessary to sustain the desired fluxes could account for 20% of the whole cell dry weight.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-805X
2405-805X
DOI:10.1016/j.synbio.2023.09.005