Plasma nitriding of 90CrMoV8 tool steel for the enhancement of hardness and corrosion resistance

The aim of the study is to apply a plasma nitriding process to the 90CrMoV8 steel commonly employed in wood machining, and to determine its efficiency to improve both mechanical and electrochemical properties of the surface. Treatments were performed at a constant N2:H2 gas mixture and by varying th...

Full description

Saved in:
Bibliographic Details
Published inSurface & coatings technology Vol. 205; no. 19; pp. 4514 - 4520
Main Authors Nouveau, Corinne, Steyer, Philippe, Mohan Rao, K. Ram, Lagadrillere, Denis
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 25.06.2011
Elsevier
Subjects
SEM
Online AccessGet full text

Cover

Loading…
More Information
Summary:The aim of the study is to apply a plasma nitriding process to the 90CrMoV8 steel commonly employed in wood machining, and to determine its efficiency to improve both mechanical and electrochemical properties of the surface. Treatments were performed at a constant N2:H2 gas mixture and by varying the temperature and process duration. The structural and morphological properties of nitrided layers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with EDS microanalyses. Surface hardening and hardness profiles were evaluated by micro hardness measurements. To simulate the wood machining conditions, electrochemical tests were carried out with an oak wood electrolyte with the purpose of understanding the effects of the nitriding treatment on the corrosion resistance of the tool in operation. X-ray diffraction analyses revealed the presence of both γ′ (Fe4N) and ε (Fe2–3N) nitrides with a predominance of the ε phase. Moreover, α-Fe (110), γ′ and ε diffraction peaks were shifted to lower angles suggesting the development of compressive stresses in the post nitrided steel. As a result, it was shown that nitriding allowed a significant hardening of steel with hardness values higher than 1200HV. The diffusion layers were always composed of an outer compound layer and a hardened bulk layer which thickness was half of the total diffusion layer one. No white layer was observed. Similarly, no traces of chromium nitrides were detected. The temperature seemed to be a parameter more influent than the process duration on the morphological properties of the nitrided layer, while it had no real influence on their crystallinity. Finally, the optimal nitriding conditions to obtain a thick and hard diffusion layer are 500°C for 10h. On the other hand, to verify the effect of these parameters on the corrosion resistance, potentiodynamic polarization tests were carried out in an original “wood juice” electrolyte. After corrosion, surface was then observed at the SEM scale. Electrochemical study indicated that the untreated steel behaved as a passive material. Although the very noble character of steel was somewhat mitigated and the corrosion propensity increased for nitrided steels, the passive-like nature of the modified surface was preserved. For the same optimized parameters as those deduced from the mechanical characterization (500°C, 10h), surface presented, in addition to a huge surface hardening, a high corrosion resistance. ► Modification of 90CrMoV8 steel by plasma nitriding for wood machining. ► Enhancement of hardness and wear resistance without losing intrinsic protectiveness. ► Electrochemical tests in wood juice as the electrolyte. ► After plasma treatment high and durable corrosion resistance. ► Optimal nitriding parameters are 500 °C, 10 hours for best good behaviors.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0257-8972
1879-3347
DOI:10.1016/j.surfcoat.2011.03.087