Investigating Phase‐Change‐Induced Flow in Gas Diffusion Layers in Fuel Cells with X‐ray Computed Tomography

The performance of polymer‐electrolyte fuel cells is heavily dependent on proper management of liquid water. One particular reason is that liquid water can collect in the gas diffusion layers (GDLs) blocking the reactant flow to the catalyst layer. This results in increased mass‐transport losses. At...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 256; no. C; pp. 279 - 290
Main Authors Shum, Andrew D., Parkinson, Dilworth Y., Xiao, Xianghui, Weber, Adam Z., Burheim, Odne S., Zenyuk, Iryna V.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.12.2017
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The performance of polymer‐electrolyte fuel cells is heavily dependent on proper management of liquid water. One particular reason is that liquid water can collect in the gas diffusion layers (GDLs) blocking the reactant flow to the catalyst layer. This results in increased mass‐transport losses. At higher temperatures, evaporation of water becomes a dominant water‐removal mechanism and specifically phase‐change‐induced (PCI) flow is present due to thermal gradients. This study used synchrotron based micro X‐ray computed tomography (CT) to visualize and quantify the water distribution within gas diffusion layers subject to a thermal gradient. Plotting saturation as a function of through‐plane distance quantitatively shows water redistribution, where water evaporates at hotter locations and condenses in colder locations. The morphology of the GDLs on the micro‐scale, as well as evaporating water clusters, are resolved, indicating that the GDL voids are slightly prolate, whereas water clusters are oblate. From the mean radii of water distributions and visual inspection, it is observed that larger water clusters evaporate faster than smaller ones.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
National Science Foundation (NSF)
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Fuel Cell Technologies Office
USDOE Office of Science (SC), Basic Energy Sciences (BES)
AC02-06CH11357; AC02-05CH11231
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2017.10.012