Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo

This study examined the concurrent age-related differences in muscle and tendon structure and properties. Achilles tendon morphology and mechanical properties and triceps surae muscle architecture were measured from 100 subjects [33 young (24 ± 2 yr) and 67 old (75 ± 3 yr)]. Motion analysis-assisted...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 113; no. 10; pp. 1537 - 1544
Main Authors Stenroth, Lauri, Peltonen, Jussi, Cronin, Neil J., Sipilä, Sarianna, Finni, Taija
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 15.11.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study examined the concurrent age-related differences in muscle and tendon structure and properties. Achilles tendon morphology and mechanical properties and triceps surae muscle architecture were measured from 100 subjects [33 young (24 ± 2 yr) and 67 old (75 ± 3 yr)]. Motion analysis-assisted ultrasonography was used to determine tendon stiffness, Young's modulus, and hysteresis during isometric ramp contractions. Ultrasonography was used to measure muscle architectural features and size and tendon cross-sectional area. Older participants had 17% lower ( P < 0.01) Achilles tendon stiffness and 32% lower ( P < 0.001) Young's modulus than young participants. Tendon cross-sectional area was also 16% larger ( P < 0.001) in older participants. Triceps surae muscle size was smaller ( P < 0.05) and gastrocnemius medialis muscle fascicle length shorter ( P < 0.05) in old compared with young. Maximal plantarflexion force was associated with tendon stiffness and Young's modulus ( r = 0.580, P < 0.001 and r = 0.561, P < 0.001, respectively). Comparison between old and young subjects with similar strengths did not reveal a difference in tendon stiffness. The results suggest that regardless of age, Achilles tendon mechanical properties adapt to match the level of muscle performance. Old people may compensate for lower tendon material properties by increasing tendon cross-sectional area. Lower tendon stiffness in older subjects might be beneficial for movement economy in low-intensity locomotion and thus optimized for their daily activities.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:8750-7587
1522-1601
1522-1601
DOI:10.1152/japplphysiol.00782.2012