A Novel Medical Diagnosis model for COVID-19 infection detection based on Deep Features and Bayesian Optimization
A pneumonia of unknown causes, which was detected in Wuhan, China, and spread rapidly throughout the world, was declared as Coronavirus disease 2019 (COVID-19). Thousands of people have lost their lives to this disease. Its negative effects on public health are ongoing. In this study, an intelligenc...
Saved in:
Published in | Applied soft computing Vol. 97; p. 106580 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier B.V
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A pneumonia of unknown causes, which was detected in Wuhan, China, and spread rapidly throughout the world, was declared as Coronavirus disease 2019 (COVID-19). Thousands of people have lost their lives to this disease. Its negative effects on public health are ongoing. In this study, an intelligence computer-aided model that can automatically detect positive COVID-19 cases is proposed to support daily clinical applications. The proposed model is based on the convolution neural network (CNN) architecture and can automatically reveal discriminative features on chest X-ray images through its convolution with rich filter families, abstraction, and weight-sharing characteristics. Contrary to the generally used transfer learning approach, the proposed deep CNN model was trained from scratch. Instead of the pre-trained CNNs, a novel serial network consisting of five convolution layers was designed. This CNN model was utilized as a deep feature extractor. The extracted deep discriminative features were used to feed the machine learning algorithms, which were k-nearest neighbor, support vector machine (SVM), and decision tree. The hyperparameters of the machine learning models were optimized using the Bayesian optimization algorithm. The experiments were conducted on a public COVID-19 radiology database. The database was divided into two parts as training and test sets with 70% and 30% rates, respectively. As a result, the most efficient results were ensured by the SVM classifier with an accuracy of 98.97%, a sensitivity of 89.39%, a specificity of 99.75%, and an F-score of 96.72%. Consequently, a cheap, fast, and reliable intelligence tool has been provided for COVID-19 infection detection. The developed model can be used to assist field specialists, physicians, and radiologists in the decision-making process. Thanks to the proposed tool, the misdiagnosis rates can be reduced, and the proposed model can be used as a retrospective evaluation tool to validate positive COVID-19 infection cases.
•In this study, COVID-19 detection system is proposed to support daily clinical applications.•The proposed model is based on the CNN and can automatically reveal discriminative features on chest X-ray images.•Instead of the pre-trained CNNs, a novel serial network consisting of five convolution layers was designed. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1568-4946 1872-9681 |
DOI: | 10.1016/j.asoc.2020.106580 |