Stem cell features of benign and malignant prostate epithelial cells

We present a new hypothesis suggesting that the different malignant potential of benign prostatic hyperplasia (BPH) and high grade prostatic intraepithelial neoplasia may be explained by distinct alterations in stem cell-like properties. We used our results and the recent literature to develop this...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of urology Vol. 160; no. 6 Pt 2; p. 2381
Main Authors De Marzo, A M, Nelson, W G, Meeker, A K, Coffey, D S
Format Journal Article
LanguageEnglish
Published United States 01.12.1998
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:We present a new hypothesis suggesting that the different malignant potential of benign prostatic hyperplasia (BPH) and high grade prostatic intraepithelial neoplasia may be explained by distinct alterations in stem cell-like properties. We used our results and the recent literature to develop this hypothesis in the context of an updated prostate stem cell model. While high grade prostatic intraepithelial neoplasia is a likely precursor lesion to many prostatic adenocarcinomas, BPH rarely if ever progresses directly to carcinoma. Prostate epithelium contains basal and secretory compartments. Secretory cells appear to differentiate from basal cells. Thus, prostatic stem cells most likely reside in the basal compartment. In BPH there is a slight increase in epithelial proliferation, yet most replicating epithelial cells within BPH maintain their normal restriction to the basal compartment. In high grade prostatic intraepithelial neoplasia there is a marked increase in cell proliferation. In contrast to BPH, the majority of proliferating cells in high grade prostatic intraepithelial neoplasia reside in the secretory compartment. The biological significance of this topographic infidelity of proliferation in high grade prostatic intraepithelial neoplasia remains unclear but may relate mechanistically to down regulation of the cyclin dependent kinase inhibitor, p27kip1. Normal basal cells express GSTP1, an enzyme that inactivates reactive electrophiles and organic hydroperoxides, and that may protect cells from deoxyribonucleic acid damaging agents. In contrast, normal secretory cells and high grade prostatic intraepithelial neoplasia cells do not express this enzyme. We propose that topographic infidelity of proliferation produces a population of secretory cells replicating in the absence of key genome protective mechanisms, thus setting the stage for an accumulation of genomic alterations and instability in high grade prostatic intraepithelial neoplasia. This action occurs along with activation of telomerase, resulting in an immortal clone capable of developing into invasive carcinoma. The model predicts that genome protection remains intact in BPH, minimizing its malignant potential.
ISSN:0022-5347
DOI:10.1016/S0022-5347(01)62196-7