Exogenous Polyunsaturated Fatty Acids Impact Membrane Remodeling and Affect Virulence Phenotypes among Pathogenic Vibrio Species

The pathogenic species ( , , and ) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted 's ability to acquire fatty acids from environmental sources and...

Full description

Saved in:
Bibliographic Details
Published inApplied and environmental microbiology Vol. 83; no. 22; p. 1
Main Authors Moravec, Anna R, Siv, Andrew W, Hobby, Chelsea R, Lindsay, Emily N, Norbash, Layla V, Shults, Daniel J, Symes, Steven J K, Giles, David K
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 15.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The pathogenic species ( , , and ) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted 's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids. Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. species exhibit significant diversity with regard to the machinery known to participate in the uptake and incorporation of fatty acids into their membranes. Both aquatic and host niches occupied by are rife with various free fatty acids and fatty acid-containing lipids. The roles of fatty acids in the environmental survival and pathogenesis of bacteria have begun to emerge and are expected to expand significantly. The current study demonstrates the responsiveness of , , and to exogenous PUFAs. In addition to phospholipid remodeling, PUFA assimilation impacts membrane permeability, motility, biofilm formation, and resistance to polymyxin B.
AbstractList The pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids.
ABSTRACT The pathogenic Vibrio species ( V. cholerae , V. parahaemolyticus , and V. vulnificus ) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio 's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids. IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the uptake and incorporation of fatty acids into their membranes. Both aquatic and host niches occupied by Vibrio are rife with various free fatty acids and fatty acid-containing lipids. The roles of fatty acids in the environmental survival and pathogenesis of bacteria have begun to emerge and are expected to expand significantly. The current study demonstrates the responsiveness of V. cholerae , V. parahaemolyticus , and V. vulnificus to exogenous PUFAs. In addition to phospholipid remodeling, PUFA assimilation impacts membrane permeability, motility, biofilm formation, and resistance to polymyxin B.
The pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids.IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the uptake and incorporation of fatty acids into their membranes. Both aquatic and host niches occupied by Vibrio are rife with various free fatty acids and fatty acid-containing lipids. The roles of fatty acids in the environmental survival and pathogenesis of bacteria have begun to emerge and are expected to expand significantly. The current study demonstrates the responsiveness of V. cholerae, V. parahaemolyticus, and V. vulnificus to exogenous PUFAs. In addition to phospholipid remodeling, PUFA assimilation impacts membrane permeability, motility, biofilm formation, and resistance to polymyxin B.
The pathogenic Vibrio species ( V. cholerae , V. parahaemolyticus , and V. vulnificus ) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio 's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids. IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the uptake and incorporation of fatty acids into their membranes. Both aquatic and host niches occupied by Vibrio are rife with various free fatty acids and fatty acid-containing lipids. The roles of fatty acids in the environmental survival and pathogenesis of bacteria have begun to emerge and are expected to expand significantly. The current study demonstrates the responsiveness of V. cholerae , V. parahaemolyticus , and V. vulnificus to exogenous PUFAs. In addition to phospholipid remodeling, PUFA assimilation impacts membrane permeability, motility, biofilm formation, and resistance to polymyxin B.
The pathogenic species ( , , and ) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted 's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids. Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. species exhibit significant diversity with regard to the machinery known to participate in the uptake and incorporation of fatty acids into their membranes. Both aquatic and host niches occupied by are rife with various free fatty acids and fatty acid-containing lipids. The roles of fatty acids in the environmental survival and pathogenesis of bacteria have begun to emerge and are expected to expand significantly. The current study demonstrates the responsiveness of , , and to exogenous PUFAs. In addition to phospholipid remodeling, PUFA assimilation impacts membrane permeability, motility, biofilm formation, and resistance to polymyxin B.
Author Norbash, Layla V
Symes, Steven J K
Giles, David K
Lindsay, Emily N
Hobby, Chelsea R
Shults, Daniel J
Siv, Andrew W
Moravec, Anna R
Author_xml – sequence: 1
  givenname: Anna R
  surname: Moravec
  fullname: Moravec, Anna R
  organization: Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
– sequence: 2
  givenname: Andrew W
  surname: Siv
  fullname: Siv, Andrew W
  organization: Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
– sequence: 3
  givenname: Chelsea R
  surname: Hobby
  fullname: Hobby, Chelsea R
  organization: Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
– sequence: 4
  givenname: Emily N
  surname: Lindsay
  fullname: Lindsay, Emily N
  organization: Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
– sequence: 5
  givenname: Layla V
  surname: Norbash
  fullname: Norbash, Layla V
  organization: Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
– sequence: 6
  givenname: Daniel J
  surname: Shults
  fullname: Shults, Daniel J
  organization: Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
– sequence: 7
  givenname: Steven J K
  surname: Symes
  fullname: Symes, Steven J K
  organization: Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
– sequence: 8
  givenname: David K
  surname: Giles
  fullname: Giles, David K
  email: david-giles@utc.edu
  organization: Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA david-giles@utc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28864654$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtv1DAURi1URKeFHWtkiQ0LUuzEdpwN0qiaQqVWjHhtLce5nnGV2FPbQcyOn46nLRWwuot7dO7jO0FHPnhA6CUlZ5TW8t1ydX1GKKO8ou0TtKCkkxVvGnGEFoR0XVXXjByjk5RuCCGMCPkMHddSCiY4W6Bfq59hAz7MCa_DuJ990nmOOsOAL3TOe7w0bkj4ctppk_E1TH3UHvBnmMIAo_MbrP2Al9ZCaX93cR7BG8DrbXHm_Q4S1lMo1Frn7WGQM4Xqowv4yw6Mg_QcPbV6TPDioZ6ibxerr-cfq6tPHy7Pl1eVYZznyjLKNGHS1tJK23SiNy1vec9Z3Q2D4VDfVdtLIQYmgGuuSS-JZVzoQjen6P29dzf3EwwGfI56VLvoJh33Kmin_u14t1Wb8ENxIQRlbRG8eRDEcDtDympyycA4ln-U9ynaNYLyru0O6Ov_0JswR1_OK5QUTdPJui7U23vKxJBSBPu4DCXqEK0q0aq7aBU9SF_9fcAj_CfL5jdeeKNJ
CitedBy_id crossref_primary_10_3389_fmicb_2020_01453
crossref_primary_10_1186_s12864_021_07521_5
crossref_primary_10_3389_fnut_2019_00058
crossref_primary_10_3390_biom12091269
crossref_primary_10_1016_j_bbrep_2023_101504
crossref_primary_10_1128_mbio_00721_24
crossref_primary_10_1038_s41467_023_40947_x
crossref_primary_10_1186_s12866_020_01988_0
crossref_primary_10_32708_uutfd_1337979
crossref_primary_10_1007_s00253_020_10794_7
crossref_primary_10_3390_ijms25010075
crossref_primary_10_1002_mbo3_635
crossref_primary_10_3390_cells8040354
crossref_primary_10_1186_s12866_018_1259_8
crossref_primary_10_1016_j_bbamem_2020_183236
crossref_primary_10_1039_D3CB00035D
crossref_primary_10_1111_1348_0421_12676
crossref_primary_10_1016_j_redox_2024_103211
crossref_primary_10_3390_microorganisms10050924
crossref_primary_10_1016_j_algal_2020_101802
crossref_primary_10_1002_mbo3_1237
crossref_primary_10_3390_ijms232213754
crossref_primary_10_1007_s12602_022_10006_w
crossref_primary_10_3390_nu14010145
crossref_primary_10_3389_fmicb_2022_1023575
crossref_primary_10_1128_msphere_00187_22
crossref_primary_10_3389_adar_2023_11359
crossref_primary_10_1101_gad_314674_118
crossref_primary_10_1021_acs_jafc_1c03896
crossref_primary_10_1155_2019_2603435
Cites_doi 10.1128/MMBR.67.3.454-472.2003
10.1128/mBio.00305-13
10.1194/jlr.R800005-JLR200
10.1021/jm300908t
10.1016/j.biochi.2017.06.015
10.1128/JCM.01286-11
10.1016/j.plipres.2004.05.004
10.1038/ismej.2011.167
10.1128/JB.00762-16
10.1128/jb.175.7.1865-1870.1993
10.1016/j.jnutbio.2011.11.009
10.1073/pnas.0915021107
10.1128/JB.182.12.3405-3415.2000
10.1128/AEM.02044-14
10.1128/mmbr.61.4.429-441.1997
10.1128/JB.187.10.3407-3414.2005
10.1016/j.bbamem.2004.06.012
10.1016/0005-2760(91)90049-N
10.3389/fmicb.2014.00038
10.1111/j.1541-4337.2009.00069.x
10.1128/iai.17.2.303-312.1977
10.1074/jbc.M112.442988
10.1128/JB.00129-08
10.1021/bi060842w
10.1016/S0021-9258(17)39750-8
10.1177/000456329803500213
10.1136/gut.35.11.1557
10.1371/journal.pone.0064554
10.1139/o59-099
10.1128/JB.00045-12
10.1073/pnas.0308707101
10.1128/JB.02409-14
10.1128/IAI.01435-06
10.1128/AEM.02856-15
10.1111/j.1365-2958.2010.07476.x
10.1371/journal.pone.0082914
10.1016/S0272-2712(18)30103-3
10.1093/oxfordjournals.jbchem.a124432
10.1128/AEM.00924-06
10.1038/nrmicro1839
10.1128/IAI.72.12.6836-6845.2004
10.1016/j.febslet.2006.04.032
10.1146/annurev.micro.56.012302.161038
10.1042/bj0740427
10.1128/AAC.01029-15
10.1074/jbc.M113.472829
10.1371/journal.pone.0155952
10.1128/MMBR.00046-15
10.1128/IAI.00927-10
10.1016/j.bbamcr.2004.03.007
10.1073/pnas.0909712107
10.1046/j.1365-2958.1997.5481909.x
10.1128/mBio.02170-15
10.1099/mic.0.2008/018135-0
10.1093/nar/gkl838
10.1016/S0140-6736(03)12659-1
10.1016/j.plipres.2013.12.001
10.1128/AEM.00293-16
10.1080/08927014.2016.1149571
10.1128/iai.65.8.3112-3117.1997
10.1111/mmi.12401
10.1371/journal.pone.0013557
10.1038/ismej.2009.50
10.1046/j.1365-2427.1997.00220.x
10.1371/journal.pone.0004344
10.1016/0924-8579(95)00020-9
10.1128/MMBR.63.1.230-262.1999
10.1128/IAI.66.8.3974-3977.1998
ContentType Journal Article
Copyright Copyright © 2017 American Society for Microbiology.
Copyright American Society for Microbiology Nov 2017
Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology
Copyright_xml – notice: Copyright © 2017 American Society for Microbiology.
– notice: Copyright American Society for Microbiology Nov 2017
– notice: Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
DOI 10.1128/AEM.01415-17
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
CrossRef
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
DocumentTitleAlternate PUFA Impact on Pathogenic Vibrio Species
EISSN 1098-5336
Editor Stabb, Eric V.
Editor_xml – sequence: 1
  givenname: Eric V.
  surname: Stabb
  fullname: Stabb, Eric V.
ExternalDocumentID 10_1128_AEM_01415_17
28864654
Genre Journal Article
GroupedDBID ---
-~X
0R~
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
6J9
85S
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CGR
CS3
CUY
CVF
D0L
DIK
E.-
E3Z
EBS
ECM
EIF
EJD
F5P
GX1
H13
HYE
HZ~
K-O
KQ8
L7B
NPM
O9-
OK1
P2P
PQQKQ
RHF
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UCJ
UHB
W8F
WH7
WOQ
X6Y
~02
~KM
AAYXX
CITATION
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c455t-f414a048f28f8f396bc7575b5429ddc5e229ddcfb866d46e5a5a0b80f456a96b3
IEDL.DBID RPM
ISSN 0099-2240
IngestDate Tue Sep 17 21:22:00 EDT 2024
Fri Oct 25 07:03:31 EDT 2024
Thu Oct 10 15:14:44 EDT 2024
Thu Sep 12 20:10:12 EDT 2024
Sat Sep 28 08:46:23 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords fatty acids
Vibrio cholerae
Vibrio vulnificus
Vibrio parahaemolyticus
motility
phospholipids
biofilms
Vibrio
Language English
License Copyright © 2017 American Society for Microbiology.
All Rights Reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-f414a048f28f8f396bc7575b5429ddc5e229ddcfb866d46e5a5a0b80f456a96b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Moravec AR, Siv AW, Hobby CR, Lindsay EN, Norbash LV, Shults DJ, Symes SJK, Giles DK. 2017. Exogenous polyunsaturated fatty acids impact membrane remodeling and affect virulence phenotypes among pathogenic Vibrio species. Appl Environ Microbiol 83:e01415-17. https://doi.org/10.1128/AEM.01415-17.
OpenAccessLink https://aem.asm.org/content/aem/83/22/e01415-17.full.pdf
PMID 28864654
PQID 1986339822
PQPubID 42251
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5666147
proquest_miscellaneous_1936159797
proquest_journals_1986339822
crossref_primary_10_1128_AEM_01415_17
pubmed_primary_28864654
PublicationCentury 2000
PublicationDate 2017-Nov-15
PublicationDateYYYYMMDD 2017-11-15
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-Nov-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Applied and environmental microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2017
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References 14430870 - Biochem J. 1960 Mar;74:427-9
6376508 - J Biol Chem. 1984 Jul 10;259(13):8437-43
9234762 - Infect Immun. 1997 Aug;65(8):3112-7
21255114 - Mol Microbiol. 2011 Feb;79(3):716-28
26567312 - Appl Environ Microbiol. 2015 Nov 13;82(2):696-704
12966144 - Microbiol Mol Biol Rev. 2003 Sep;67(3):454-72, table of contents
20133870 - Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2259-64
17261615 - Infect Immun. 2007 Apr;75(4):1946-53
7828972 - Gut. 1994 Nov;35(11):1557-61
28668270 - Biochimie. 2017 Oct;141:30-39
22475809 - J Nutr Biochem. 2012 Dec;23(12):1661-7
22134647 - ISME J. 2012 May;6(5):939-50
15458813 - Prog Lipid Res. 2004 Sep;43(5):383-402
21307833 - J Vis Exp. 2011 Jan 30;(47):null
9673290 - Infect Immun. 1998 Aug;66(8):3974-7
26980068 - Biofouling. 2016;32(4):497-509
23322771 - J Biol Chem. 2013 Feb 22;288(8):5873-85
10549425 - Clin Lab Med. 1999 Sep;19(3):537-52, vi
9409147 - Microbiol Mol Biol Rev. 1997 Dec;61(4):429-41
26944841 - Appl Environ Microbiol. 2016 Apr 18;82(9):2819-32
18390654 - J Bacteriol. 2008 Jun;190(11):4038-49
16950899 - Appl Environ Microbiol. 2006 Nov;72(11):7043-9
20133655 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2860-5
10066837 - Microbiol Mol Biol Rev. 1999 Mar;63(1):230-62
16906759 - Biochemistry. 2006 Aug 22;45(33):10008-19
19183815 - PLoS One. 2009;4(2):e4344
1135515 - Res Commun Chem Pathol Pharmacol. 1975 Mar;10(3):511-23
19358 - Infect Immun. 1977 Aug;17(2):303-12
21149585 - Infect Immun. 2011 Mar;79(3):1016-24
28115548 - J Bacteriol. 2017 Mar 14;199(7)
10852871 - J Bacteriol. 2000 Jun;182(12):3405-15
23782700 - J Biol Chem. 2013 Aug 2;288(31):22346-58
15519305 - Biochim Biophys Acta. 2004 Nov 3;1666(1-2):2-18
17098933 - Nucleic Acids Res. 2007 Jan;35(Database issue):D527-32
19421235 - ISME J. 2009 Sep;3(9):1082-92
12620739 - Lancet. 2003 Mar 1;361(9359):743-9
22843841 - J Bacteriol. 2012 Oct;194(19):5274-84
9350858 - Mol Microbiol. 1997 Sep;25(6):1003-9
21880975 - J Clin Microbiol. 2011 Nov;49(11):3739-49
25128342 - Appl Environ Microbiol. 2014 Oct;80(20):6527-38
14983042 - Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2524-9
12142492 - Annu Rev Microbiol. 2002;56:743-68
24362249 - Prog Lipid Res. 2014 Jan;53:124-44
13671378 - Can J Biochem Physiol. 1959 Aug;37(8):911-7
18611685 - Int J Antimicrob Agents. 1995 Sep;6(1):47-50
25733618 - J Bacteriol. 2015 May;197(10):1716-25
15546660 - Biochim Biophys Acta. 2004 Nov 11;1694(1-3):97-109
24376605 - PLoS One. 2013 Dec 23;8(12):e82914
21042406 - PLoS One. 2010 Oct 21;5(10):e13557
24575082 - Front Microbiol. 2014 Feb 11;5:38
9547901 - Ann Clin Biochem. 1998 Mar;35 ( Pt 2):279-82
27224476 - PLoS One. 2016 May 25;11(5):e0155952
15557604 - Infect Immun. 2004 Dec;72(12):6836-45
23092313 - J Med Chem. 2012 Nov 26;55(22):9669-81
18264115 - Nat Rev Microbiol. 2008 Mar;6(3):222-33
18369234 - J Lipid Res. 2008 Sep;49(9):1867-74
24102883 - Mol Microbiol. 2013 Nov;90(4):841-57
8384617 - J Bacteriol. 1993 Apr;175(7):1865-70
26392502 - Antimicrob Agents Chemother. 2015 Dec;59(12):7471-6
26884427 - MBio. 2016 Feb 16;7(1):e02170-15
7961600 - J Biochem. 1994 May;115(5):868-74
26658001 - Microbiol Mol Biol Rev. 2015 Dec 09;80(1):69-90
2054374 - Biochim Biophys Acta. 1991 Jun 19;1084(1):13-20
15866926 - J Bacteriol. 2005 May;187(10):3407-14
18524913 - Microbiology. 2008 Jun;154(Pt 6):1584-98
16647057 - FEBS Lett. 2006 May 15;580(11):2731-5
23737986 - PLoS One. 2013 May 29;8(5):e64554
23674613 - MBio. 2013 May 14;4(3):e00305-13
e_1_3_3_50_2
e_1_3_3_71_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
Neitzel JJ (e_1_3_3_19_2) 2010; 3
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_70_2
O'Toole G (e_1_3_3_67_2) 2011; 2011
e_1_3_3_17_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
Rabinowitz JL (e_1_3_3_45_2) 1975; 10
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
References_xml – ident: e_1_3_3_17_2
  doi: 10.1128/MMBR.67.3.454-472.2003
– ident: e_1_3_3_41_2
  doi: 10.1128/mBio.00305-13
– ident: e_1_3_3_18_2
  doi: 10.1194/jlr.R800005-JLR200
– ident: e_1_3_3_43_2
  doi: 10.1021/jm300908t
– ident: e_1_3_3_52_2
  doi: 10.1016/j.biochi.2017.06.015
– ident: e_1_3_3_62_2
  doi: 10.1128/JCM.01286-11
– ident: e_1_3_3_24_2
  doi: 10.1016/j.plipres.2004.05.004
– ident: e_1_3_3_63_2
  doi: 10.1038/ismej.2011.167
– ident: e_1_3_3_50_2
  doi: 10.1128/JB.00762-16
– ident: e_1_3_3_51_2
  doi: 10.1128/jb.175.7.1865-1870.1993
– ident: e_1_3_3_26_2
  doi: 10.1016/j.jnutbio.2011.11.009
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.0915021107
– ident: e_1_3_3_38_2
  doi: 10.1128/JB.182.12.3405-3415.2000
– volume: 2011
  start-page: 2437
  year: 2011
  ident: e_1_3_3_67_2
  article-title: Microtiter dish biofilm formation assay
  publication-title: J Vis Exp
  contributor:
    fullname: O'Toole G
– ident: e_1_3_3_56_2
  doi: 10.1128/AEM.02044-14
– ident: e_1_3_3_29_2
  doi: 10.1128/mmbr.61.4.429-441.1997
– ident: e_1_3_3_64_2
  doi: 10.1128/JB.187.10.3407-3414.2005
– ident: e_1_3_3_72_2
  doi: 10.1016/j.bbamem.2004.06.012
– ident: e_1_3_3_30_2
  doi: 10.1016/0005-2760(91)90049-N
– ident: e_1_3_3_58_2
  doi: 10.3389/fmicb.2014.00038
– ident: e_1_3_3_61_2
  doi: 10.1111/j.1541-4337.2009.00069.x
– ident: e_1_3_3_36_2
  doi: 10.1128/iai.17.2.303-312.1977
– ident: e_1_3_3_71_2
  doi: 10.1074/jbc.M112.442988
– ident: e_1_3_3_44_2
  doi: 10.1128/JB.00129-08
– ident: e_1_3_3_53_2
  doi: 10.1021/bi060842w
– ident: e_1_3_3_16_2
  doi: 10.1016/S0021-9258(17)39750-8
– ident: e_1_3_3_47_2
  doi: 10.1177/000456329803500213
– ident: e_1_3_3_34_2
  doi: 10.1136/gut.35.11.1557
– ident: e_1_3_3_22_2
  doi: 10.1371/journal.pone.0064554
– ident: e_1_3_3_66_2
  doi: 10.1139/o59-099
– ident: e_1_3_3_33_2
  doi: 10.1128/JB.00045-12
– ident: e_1_3_3_9_2
  doi: 10.1073/pnas.0308707101
– ident: e_1_3_3_13_2
  doi: 10.1128/JB.02409-14
– ident: e_1_3_3_12_2
  doi: 10.1128/IAI.01435-06
– ident: e_1_3_3_42_2
  doi: 10.1128/AEM.02856-15
– ident: e_1_3_3_11_2
  doi: 10.1111/j.1365-2958.2010.07476.x
– ident: e_1_3_3_48_2
  doi: 10.1371/journal.pone.0082914
– ident: e_1_3_3_2_2
  doi: 10.1016/S0272-2712(18)30103-3
– ident: e_1_3_3_6_2
  doi: 10.1093/oxfordjournals.jbchem.a124432
– ident: e_1_3_3_8_2
  doi: 10.1128/AEM.00924-06
– ident: e_1_3_3_69_2
  doi: 10.1038/nrmicro1839
– ident: e_1_3_3_31_2
  doi: 10.1128/IAI.72.12.6836-6845.2004
– ident: e_1_3_3_55_2
  doi: 10.1016/j.febslet.2006.04.032
– ident: e_1_3_3_27_2
  doi: 10.1146/annurev.micro.56.012302.161038
– ident: e_1_3_3_46_2
  doi: 10.1042/bj0740427
– ident: e_1_3_3_15_2
  doi: 10.1128/AAC.01029-15
– volume: 3
  start-page: 57
  year: 2010
  ident: e_1_3_3_19_2
  article-title: Fatty acid molecules: a role in cell signaling
  publication-title: Nat Education
  contributor:
    fullname: Neitzel JJ
– ident: e_1_3_3_21_2
  doi: 10.1074/jbc.M113.472829
– ident: e_1_3_3_59_2
  doi: 10.1371/journal.pone.0155952
– ident: e_1_3_3_7_2
  doi: 10.1128/MMBR.00046-15
– ident: e_1_3_3_14_2
  doi: 10.1128/IAI.00927-10
– ident: e_1_3_3_70_2
  doi: 10.1016/j.bbamcr.2004.03.007
– ident: e_1_3_3_37_2
  doi: 10.1073/pnas.0909712107
– ident: e_1_3_3_3_2
  doi: 10.1046/j.1365-2958.1997.5481909.x
– ident: e_1_3_3_65_2
  doi: 10.1128/mBio.02170-15
– ident: e_1_3_3_20_2
  doi: 10.1099/mic.0.2008/018135-0
– volume: 10
  start-page: 511
  year: 1975
  ident: e_1_3_3_45_2
  article-title: Lipids and other components of human jejunal and ileal mucosa
  publication-title: Res Commun Chem Pathol Pharmacol
  contributor:
    fullname: Rabinowitz JL
– ident: e_1_3_3_68_2
  doi: 10.1093/nar/gkl838
– ident: e_1_3_3_4_2
  doi: 10.1016/S0140-6736(03)12659-1
– ident: e_1_3_3_25_2
  doi: 10.1016/j.plipres.2013.12.001
– ident: e_1_3_3_49_2
  doi: 10.1128/AEM.00293-16
– ident: e_1_3_3_54_2
  doi: 10.1080/08927014.2016.1149571
– ident: e_1_3_3_39_2
  doi: 10.1128/iai.65.8.3112-3117.1997
– ident: e_1_3_3_5_2
  doi: 10.1111/mmi.12401
– ident: e_1_3_3_23_2
  doi: 10.1371/journal.pone.0013557
– ident: e_1_3_3_57_2
  doi: 10.1038/ismej.2009.50
– ident: e_1_3_3_60_2
  doi: 10.1046/j.1365-2427.1997.00220.x
– ident: e_1_3_3_32_2
  doi: 10.1371/journal.pone.0004344
– ident: e_1_3_3_35_2
  doi: 10.1016/0924-8579(95)00020-9
– ident: e_1_3_3_28_2
  doi: 10.1128/MMBR.63.1.230-262.1999
– ident: e_1_3_3_40_2
  doi: 10.1128/IAI.66.8.3974-3977.1998
SSID ssj0004068
Score 2.4337173
Snippet The pathogenic species ( , , and ) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or...
ABSTRACT The pathogenic Vibrio species ( V. cholerae , V. parahaemolyticus , and V. vulnificus ) represent a constant threat to human health, causing foodborne...
The pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) represent a constant threat to human health, causing foodborne and skin...
The pathogenic Vibrio species ( V. cholerae , V. parahaemolyticus , and V. vulnificus ) represent a constant threat to human health, causing foodborne and skin...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1
SubjectTerms Aquatic environment
Bacteria
Biofilms
Cell Membrane - chemistry
Cell Membrane - metabolism
Cell membranes
Chromatography
Chromatography, Thin Layer
Exposure
Fatty acids
Fatty Acids, Unsaturated - chemistry
Fatty Acids, Unsaturated - metabolism
Foodborne diseases
Foodborne pathogens
Health risks
Humans
Hydrophobicity
Ingestion
Liquid chromatography
Machinery and equipment
Mass Spectrometry
Mass spectroscopy
Membrane permeability
Membranes
Pathogens
Permeability
Phospholipids
Phospholipids - chemistry
Phospholipids - metabolism
Physiology
Polyunsaturated fatty acids
Seafood
Skin
Thin layer chromatography
Vibrio
Vibrio cholerae - chemistry
Vibrio cholerae - genetics
Vibrio cholerae - metabolism
Vibrio cholerae - pathogenicity
Vibrio Infections - microbiology
Vibrio parahaemolyticus - chemistry
Vibrio parahaemolyticus - genetics
Vibrio parahaemolyticus - metabolism
Vibrio parahaemolyticus - pathogenicity
Vibrio vulnificus - chemistry
Vibrio vulnificus - genetics
Vibrio vulnificus - metabolism
Vibrio vulnificus - pathogenicity
Virulence
Water pollution
Waterborne diseases
Wounds
Title Exogenous Polyunsaturated Fatty Acids Impact Membrane Remodeling and Affect Virulence Phenotypes among Pathogenic Vibrio Species
URI https://www.ncbi.nlm.nih.gov/pubmed/28864654
https://www.proquest.com/docview/1986339822
https://search.proquest.com/docview/1936159797
https://pubmed.ncbi.nlm.nih.gov/PMC5666147
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEB3iQGh7KK375TYJW2iPsq3VarU6mmCTNLi4pSm5if0SEcRysGSob_3pnV15TdzeetJhVysxM8u8lWbeA_hES1qynNGIKVNGLJY8Uja20ZhZk-vMyVy5Buf5V355w77cprdHkIZeGF-0r1U1rO-Xw7q687WVD0s9CnVio8X8AiEIZpVs1IMeBmg4oodmyDEXgXrS5atQ7U7FaDKdD11hYxrFTnyPCsEdndhhSvoHZ_5dLvko_8xewPMdcCST7gVfwpGt-3DSSUlu-_AkdBg3fXj2iGTwFfye_lp1TKxksbrfburGcXkixDRkJtt2Sya6Mg258u2SZG6XeH6uLfluvUgOLkFkbcjE132Qn9V649uUyOIO13QfcBviBYvIArGke1ClcZZaVyvite1t8xpuZtMfF5fRTnch0ixN26hkMZO4s0sqSlEmOVc6Q1SnnLSVMTq11F9LJTg3jNtUpnKsxLhEMCZxdvIGjutVbd8BMWhgqRKdmFgynWRSSI0Ih-YyQ9xH-QA-B9MXDx29RuGPJVQU6K3Ce6uIswGcBr8Uu03WFHEueJI4AsIBfNwP4_Zw_zzQUmhYnJMgZsuzHJd427lx_6Dg_wFkBw7eT3DU24cjGJGegnsXge__-84P8JQ6gOAKCtNTOG7XG3uG8KZV59C7_ibOfVD_AcqR_J4
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4aQ2hw4EeBrTDASHBM2jhO4hyrqVUH61TBNu0W2Y6jRaxp1aQS5cSfzrNTV-s4wSkHO3bi92x_Tr73PYBPtKAFSxn1mMwLjwUi9qQOtNdnOk9VYtJcmQDnyXk8vmRfrqPrPYhcLIwl7StZ-tXtzK_KG8utXMxUz_HEetPJCUIQ3FWS3gN4iPO1z9wh3YVD9mPuxCfNjuX47pT3BsOJb6iNkReY9HuU89gIiu1uSn8hzfuEyTs70OgZXLlnb4knP_xVI331656s4z-_3HN4usGkZNAWv4A9XXXgUZulct2BAxe8XHfgyR39wpfwe_hz3oq8kun8dr2qaiMTiug1JyPRNGsyUGVek1MbiUkmeoZH80qTb9rm38EmiKhyMrCUEnJVLlc2AopMb7BN8224JjYXEpkiTDUdlQpryWU5J98XGhel-hVcjoYXJ2Nvk9LBUyyKGq9gARO4aBSUF7wI01iqBAGjNFmz8lxFmtprIXkc5yzWkYhEX_J-gThPYO3wNexX80ofAcnRckKGKswDwVSYCC4UgieaigQhJY278NnZNFu0yh2ZPfFQnqEbZNYNsiDpwrEzeLaZv3UWpDwOQ6Nt2IWP22KceeZ3Co4UDizWCREOpkmKTRy2_rHtyDlWF5Idz9lWMKreuyXoD1bde2P_N_995wc4GF9MzrKz0_Ovb-ExNTjE8BajY9hvliv9DlFUI9_bOfMHzrQdsQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZgENuBpWyFAYwEx2yO4zjHamg1A3QUAYNGXCJv0URM06pJJcqJn86z01TtcJtTDn6xE_vZ_px873sIvSclKWlGiUelLj0aCeZJExkvpEZnKrVprmyA8_SUHZ_RT-fJ-U6qL0faV7Ly68uZX1cXjlu5mKmg54kF-fQIIAjsKmmw0GVwE92CORuy_qDeh0SGjPcClHbX6jnvhAej8dS39MbEi2wKPsI5s6Ji-xvTf2jzKmlyZxeaPEQ_--fvyCe__FUrffXnirTjtV7wEXqwwaZ41Jk8RjdMPUC3u2yV6wG62wcxNwN0f0fH8An6O_4978RecT6_XK_qxsqFAorVeCLado1HqtINPnERmXhqZnBErw3-alweHqgCi1rjkaOW4B_VcuUioXB-AXXab8QNdjmRcA5w1TZUKbCSy2qOvy0MLE7NU3Q2GX8_OvY2qR08RZOk9UoaUQGLR0l4ycs4Y1KlABylzZ6ltUoMcddScsY0ZSYRiQglD0vAewKs42fooJ7X5gXCGkZPyFjFOhJUxangQgGIIplIAVoSNkQf-nEtFp2CR-FOPoQX4AqFc4UiSofosB_0YjOPmyLKOItjq3E4RO-2xTAD7W8V6CnoWLCJARZmaQZVPO98ZNtQ71xDlO55z9bAqnvvl4BPOJXvjQ-8vPadb9Gd_OOk-HJy-vkVukcsHLH0xeQQHbTLlXkNYKqVb9y0-QeyMiAx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exogenous+Polyunsaturated+Fatty+Acids+Impact+Membrane+Remodeling+and+Affect+Virulence+Phenotypes+among+Pathogenic+Vibrio+Species&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Moravec%2C+Anna+R.&rft.au=Siv%2C+Andrew+W.&rft.au=Hobby%2C+Chelsea+R.&rft.au=Lindsay%2C+Emily+N.&rft.date=2017-11-15&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=83&rft.issue=22&rft_id=info:doi/10.1128%2FAEM.01415-17&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_AEM_01415_17
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon