Exogenous Polyunsaturated Fatty Acids Impact Membrane Remodeling and Affect Virulence Phenotypes among Pathogenic Vibrio Species
The pathogenic species ( , , and ) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted 's ability to acquire fatty acids from environmental sources and...
Saved in:
Published in | Applied and environmental microbiology Vol. 83; no. 22; p. 1 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
15.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The pathogenic
species (
,
, and
) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted
's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of
species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic
species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids.
Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression.
species exhibit significant diversity with regard to the machinery known to participate in the uptake and incorporation of fatty acids into their membranes. Both aquatic and host niches occupied by
are rife with various free fatty acids and fatty acid-containing lipids. The roles of fatty acids in the environmental survival and pathogenesis of bacteria have begun to emerge and are expected to expand significantly. The current study demonstrates the responsiveness of
,
, and
to exogenous PUFAs. In addition to phospholipid remodeling, PUFA assimilation impacts membrane permeability, motility, biofilm formation, and resistance to polymyxin B. |
---|---|
AbstractList | The pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids. ABSTRACT The pathogenic Vibrio species ( V. cholerae , V. parahaemolyticus , and V. vulnificus ) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio 's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids. IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the uptake and incorporation of fatty acids into their membranes. Both aquatic and host niches occupied by Vibrio are rife with various free fatty acids and fatty acid-containing lipids. The roles of fatty acids in the environmental survival and pathogenesis of bacteria have begun to emerge and are expected to expand significantly. The current study demonstrates the responsiveness of V. cholerae , V. parahaemolyticus , and V. vulnificus to exogenous PUFAs. In addition to phospholipid remodeling, PUFA assimilation impacts membrane permeability, motility, biofilm formation, and resistance to polymyxin B. The pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids.IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the uptake and incorporation of fatty acids into their membranes. Both aquatic and host niches occupied by Vibrio are rife with various free fatty acids and fatty acid-containing lipids. The roles of fatty acids in the environmental survival and pathogenesis of bacteria have begun to emerge and are expected to expand significantly. The current study demonstrates the responsiveness of V. cholerae, V. parahaemolyticus, and V. vulnificus to exogenous PUFAs. In addition to phospholipid remodeling, PUFA assimilation impacts membrane permeability, motility, biofilm formation, and resistance to polymyxin B. The pathogenic Vibrio species ( V. cholerae , V. parahaemolyticus , and V. vulnificus ) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio 's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids. IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the uptake and incorporation of fatty acids into their membranes. Both aquatic and host niches occupied by Vibrio are rife with various free fatty acids and fatty acid-containing lipids. The roles of fatty acids in the environmental survival and pathogenesis of bacteria have begun to emerge and are expected to expand significantly. The current study demonstrates the responsiveness of V. cholerae , V. parahaemolyticus , and V. vulnificus to exogenous PUFAs. In addition to phospholipid remodeling, PUFA assimilation impacts membrane permeability, motility, biofilm formation, and resistance to polymyxin B. The pathogenic species ( , , and ) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted 's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids. Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. species exhibit significant diversity with regard to the machinery known to participate in the uptake and incorporation of fatty acids into their membranes. Both aquatic and host niches occupied by are rife with various free fatty acids and fatty acid-containing lipids. The roles of fatty acids in the environmental survival and pathogenesis of bacteria have begun to emerge and are expected to expand significantly. The current study demonstrates the responsiveness of , , and to exogenous PUFAs. In addition to phospholipid remodeling, PUFA assimilation impacts membrane permeability, motility, biofilm formation, and resistance to polymyxin B. |
Author | Norbash, Layla V Symes, Steven J K Giles, David K Lindsay, Emily N Hobby, Chelsea R Shults, Daniel J Siv, Andrew W Moravec, Anna R |
Author_xml | – sequence: 1 givenname: Anna R surname: Moravec fullname: Moravec, Anna R organization: Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA – sequence: 2 givenname: Andrew W surname: Siv fullname: Siv, Andrew W organization: Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA – sequence: 3 givenname: Chelsea R surname: Hobby fullname: Hobby, Chelsea R organization: Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA – sequence: 4 givenname: Emily N surname: Lindsay fullname: Lindsay, Emily N organization: Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA – sequence: 5 givenname: Layla V surname: Norbash fullname: Norbash, Layla V organization: Department of Biological Sciences, Auburn University, Auburn, Alabama, USA – sequence: 6 givenname: Daniel J surname: Shults fullname: Shults, Daniel J organization: Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA – sequence: 7 givenname: Steven J K surname: Symes fullname: Symes, Steven J K organization: Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA – sequence: 8 givenname: David K surname: Giles fullname: Giles, David K email: david-giles@utc.edu organization: Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA david-giles@utc.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28864654$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtv1DAURi1URKeFHWtkiQ0LUuzEdpwN0qiaQqVWjHhtLce5nnGV2FPbQcyOn46nLRWwuot7dO7jO0FHPnhA6CUlZ5TW8t1ydX1GKKO8ou0TtKCkkxVvGnGEFoR0XVXXjByjk5RuCCGMCPkMHddSCiY4W6Bfq59hAz7MCa_DuJ990nmOOsOAL3TOe7w0bkj4ctppk_E1TH3UHvBnmMIAo_MbrP2Al9ZCaX93cR7BG8DrbXHm_Q4S1lMo1Frn7WGQM4Xqowv4yw6Mg_QcPbV6TPDioZ6ibxerr-cfq6tPHy7Pl1eVYZznyjLKNGHS1tJK23SiNy1vec9Z3Q2D4VDfVdtLIQYmgGuuSS-JZVzoQjen6P29dzf3EwwGfI56VLvoJh33Kmin_u14t1Wb8ENxIQRlbRG8eRDEcDtDympyycA4ln-U9ynaNYLyru0O6Ov_0JswR1_OK5QUTdPJui7U23vKxJBSBPu4DCXqEK0q0aq7aBU9SF_9fcAj_CfL5jdeeKNJ |
CitedBy_id | crossref_primary_10_3389_fmicb_2020_01453 crossref_primary_10_1186_s12864_021_07521_5 crossref_primary_10_3389_fnut_2019_00058 crossref_primary_10_3390_biom12091269 crossref_primary_10_1016_j_bbrep_2023_101504 crossref_primary_10_1128_mbio_00721_24 crossref_primary_10_1038_s41467_023_40947_x crossref_primary_10_1186_s12866_020_01988_0 crossref_primary_10_32708_uutfd_1337979 crossref_primary_10_1007_s00253_020_10794_7 crossref_primary_10_3390_ijms25010075 crossref_primary_10_1002_mbo3_635 crossref_primary_10_3390_cells8040354 crossref_primary_10_1186_s12866_018_1259_8 crossref_primary_10_1016_j_bbamem_2020_183236 crossref_primary_10_1039_D3CB00035D crossref_primary_10_1111_1348_0421_12676 crossref_primary_10_1016_j_redox_2024_103211 crossref_primary_10_3390_microorganisms10050924 crossref_primary_10_1016_j_algal_2020_101802 crossref_primary_10_1002_mbo3_1237 crossref_primary_10_3390_ijms232213754 crossref_primary_10_1007_s12602_022_10006_w crossref_primary_10_3390_nu14010145 crossref_primary_10_3389_fmicb_2022_1023575 crossref_primary_10_1128_msphere_00187_22 crossref_primary_10_3389_adar_2023_11359 crossref_primary_10_1101_gad_314674_118 crossref_primary_10_1021_acs_jafc_1c03896 crossref_primary_10_1155_2019_2603435 |
Cites_doi | 10.1128/MMBR.67.3.454-472.2003 10.1128/mBio.00305-13 10.1194/jlr.R800005-JLR200 10.1021/jm300908t 10.1016/j.biochi.2017.06.015 10.1128/JCM.01286-11 10.1016/j.plipres.2004.05.004 10.1038/ismej.2011.167 10.1128/JB.00762-16 10.1128/jb.175.7.1865-1870.1993 10.1016/j.jnutbio.2011.11.009 10.1073/pnas.0915021107 10.1128/JB.182.12.3405-3415.2000 10.1128/AEM.02044-14 10.1128/mmbr.61.4.429-441.1997 10.1128/JB.187.10.3407-3414.2005 10.1016/j.bbamem.2004.06.012 10.1016/0005-2760(91)90049-N 10.3389/fmicb.2014.00038 10.1111/j.1541-4337.2009.00069.x 10.1128/iai.17.2.303-312.1977 10.1074/jbc.M112.442988 10.1128/JB.00129-08 10.1021/bi060842w 10.1016/S0021-9258(17)39750-8 10.1177/000456329803500213 10.1136/gut.35.11.1557 10.1371/journal.pone.0064554 10.1139/o59-099 10.1128/JB.00045-12 10.1073/pnas.0308707101 10.1128/JB.02409-14 10.1128/IAI.01435-06 10.1128/AEM.02856-15 10.1111/j.1365-2958.2010.07476.x 10.1371/journal.pone.0082914 10.1016/S0272-2712(18)30103-3 10.1093/oxfordjournals.jbchem.a124432 10.1128/AEM.00924-06 10.1038/nrmicro1839 10.1128/IAI.72.12.6836-6845.2004 10.1016/j.febslet.2006.04.032 10.1146/annurev.micro.56.012302.161038 10.1042/bj0740427 10.1128/AAC.01029-15 10.1074/jbc.M113.472829 10.1371/journal.pone.0155952 10.1128/MMBR.00046-15 10.1128/IAI.00927-10 10.1016/j.bbamcr.2004.03.007 10.1073/pnas.0909712107 10.1046/j.1365-2958.1997.5481909.x 10.1128/mBio.02170-15 10.1099/mic.0.2008/018135-0 10.1093/nar/gkl838 10.1016/S0140-6736(03)12659-1 10.1016/j.plipres.2013.12.001 10.1128/AEM.00293-16 10.1080/08927014.2016.1149571 10.1128/iai.65.8.3112-3117.1997 10.1111/mmi.12401 10.1371/journal.pone.0013557 10.1038/ismej.2009.50 10.1046/j.1365-2427.1997.00220.x 10.1371/journal.pone.0004344 10.1016/0924-8579(95)00020-9 10.1128/MMBR.63.1.230-262.1999 10.1128/IAI.66.8.3974-3977.1998 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Society for Microbiology. Copyright American Society for Microbiology Nov 2017 Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2017 American Society for Microbiology. – notice: Copyright American Society for Microbiology Nov 2017 – notice: Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 5PM |
DOI | 10.1128/AEM.01415-17 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology |
DocumentTitleAlternate | PUFA Impact on Pathogenic Vibrio Species |
EISSN | 1098-5336 |
Editor | Stabb, Eric V. |
Editor_xml | – sequence: 1 givenname: Eric V. surname: Stabb fullname: Stabb, Eric V. |
ExternalDocumentID | 10_1128_AEM_01415_17 28864654 |
Genre | Journal Article |
GroupedDBID | --- -~X 0R~ 23M 2WC 39C 4.4 53G 5GY 5RE 5VS 6J9 85S AAZTW ABOGM ABPPZ ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH AENEX AFRAH AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CGR CS3 CUY CVF D0L DIK E.- E3Z EBS ECM EIF EJD F5P GX1 H13 HYE HZ~ K-O KQ8 L7B NPM O9- OK1 P2P PQQKQ RHF RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UCJ UHB W8F WH7 WOQ X6Y ~02 ~KM AAYXX CITATION 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c455t-f414a048f28f8f396bc7575b5429ddc5e229ddcfb866d46e5a5a0b80f456a96b3 |
IEDL.DBID | RPM |
ISSN | 0099-2240 |
IngestDate | Tue Sep 17 21:22:00 EDT 2024 Fri Oct 25 07:03:31 EDT 2024 Thu Oct 10 15:14:44 EDT 2024 Thu Sep 12 20:10:12 EDT 2024 Sat Sep 28 08:46:23 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | fatty acids Vibrio cholerae Vibrio vulnificus Vibrio parahaemolyticus motility phospholipids biofilms Vibrio |
Language | English |
License | Copyright © 2017 American Society for Microbiology. All Rights Reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-f414a048f28f8f396bc7575b5429ddc5e229ddcfb866d46e5a5a0b80f456a96b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Moravec AR, Siv AW, Hobby CR, Lindsay EN, Norbash LV, Shults DJ, Symes SJK, Giles DK. 2017. Exogenous polyunsaturated fatty acids impact membrane remodeling and affect virulence phenotypes among pathogenic Vibrio species. Appl Environ Microbiol 83:e01415-17. https://doi.org/10.1128/AEM.01415-17. |
OpenAccessLink | https://aem.asm.org/content/aem/83/22/e01415-17.full.pdf |
PMID | 28864654 |
PQID | 1986339822 |
PQPubID | 42251 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5666147 proquest_miscellaneous_1936159797 proquest_journals_1986339822 crossref_primary_10_1128_AEM_01415_17 pubmed_primary_28864654 |
PublicationCentury | 2000 |
PublicationDate | 2017-Nov-15 |
PublicationDateYYYYMMDD | 2017-11-15 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-Nov-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Applied and environmental microbiology |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2017 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | 14430870 - Biochem J. 1960 Mar;74:427-9 6376508 - J Biol Chem. 1984 Jul 10;259(13):8437-43 9234762 - Infect Immun. 1997 Aug;65(8):3112-7 21255114 - Mol Microbiol. 2011 Feb;79(3):716-28 26567312 - Appl Environ Microbiol. 2015 Nov 13;82(2):696-704 12966144 - Microbiol Mol Biol Rev. 2003 Sep;67(3):454-72, table of contents 20133870 - Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2259-64 17261615 - Infect Immun. 2007 Apr;75(4):1946-53 7828972 - Gut. 1994 Nov;35(11):1557-61 28668270 - Biochimie. 2017 Oct;141:30-39 22475809 - J Nutr Biochem. 2012 Dec;23(12):1661-7 22134647 - ISME J. 2012 May;6(5):939-50 15458813 - Prog Lipid Res. 2004 Sep;43(5):383-402 21307833 - J Vis Exp. 2011 Jan 30;(47):null 9673290 - Infect Immun. 1998 Aug;66(8):3974-7 26980068 - Biofouling. 2016;32(4):497-509 23322771 - J Biol Chem. 2013 Feb 22;288(8):5873-85 10549425 - Clin Lab Med. 1999 Sep;19(3):537-52, vi 9409147 - Microbiol Mol Biol Rev. 1997 Dec;61(4):429-41 26944841 - Appl Environ Microbiol. 2016 Apr 18;82(9):2819-32 18390654 - J Bacteriol. 2008 Jun;190(11):4038-49 16950899 - Appl Environ Microbiol. 2006 Nov;72(11):7043-9 20133655 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2860-5 10066837 - Microbiol Mol Biol Rev. 1999 Mar;63(1):230-62 16906759 - Biochemistry. 2006 Aug 22;45(33):10008-19 19183815 - PLoS One. 2009;4(2):e4344 1135515 - Res Commun Chem Pathol Pharmacol. 1975 Mar;10(3):511-23 19358 - Infect Immun. 1977 Aug;17(2):303-12 21149585 - Infect Immun. 2011 Mar;79(3):1016-24 28115548 - J Bacteriol. 2017 Mar 14;199(7) 10852871 - J Bacteriol. 2000 Jun;182(12):3405-15 23782700 - J Biol Chem. 2013 Aug 2;288(31):22346-58 15519305 - Biochim Biophys Acta. 2004 Nov 3;1666(1-2):2-18 17098933 - Nucleic Acids Res. 2007 Jan;35(Database issue):D527-32 19421235 - ISME J. 2009 Sep;3(9):1082-92 12620739 - Lancet. 2003 Mar 1;361(9359):743-9 22843841 - J Bacteriol. 2012 Oct;194(19):5274-84 9350858 - Mol Microbiol. 1997 Sep;25(6):1003-9 21880975 - J Clin Microbiol. 2011 Nov;49(11):3739-49 25128342 - Appl Environ Microbiol. 2014 Oct;80(20):6527-38 14983042 - Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2524-9 12142492 - Annu Rev Microbiol. 2002;56:743-68 24362249 - Prog Lipid Res. 2014 Jan;53:124-44 13671378 - Can J Biochem Physiol. 1959 Aug;37(8):911-7 18611685 - Int J Antimicrob Agents. 1995 Sep;6(1):47-50 25733618 - J Bacteriol. 2015 May;197(10):1716-25 15546660 - Biochim Biophys Acta. 2004 Nov 11;1694(1-3):97-109 24376605 - PLoS One. 2013 Dec 23;8(12):e82914 21042406 - PLoS One. 2010 Oct 21;5(10):e13557 24575082 - Front Microbiol. 2014 Feb 11;5:38 9547901 - Ann Clin Biochem. 1998 Mar;35 ( Pt 2):279-82 27224476 - PLoS One. 2016 May 25;11(5):e0155952 15557604 - Infect Immun. 2004 Dec;72(12):6836-45 23092313 - J Med Chem. 2012 Nov 26;55(22):9669-81 18264115 - Nat Rev Microbiol. 2008 Mar;6(3):222-33 18369234 - J Lipid Res. 2008 Sep;49(9):1867-74 24102883 - Mol Microbiol. 2013 Nov;90(4):841-57 8384617 - J Bacteriol. 1993 Apr;175(7):1865-70 26392502 - Antimicrob Agents Chemother. 2015 Dec;59(12):7471-6 26884427 - MBio. 2016 Feb 16;7(1):e02170-15 7961600 - J Biochem. 1994 May;115(5):868-74 26658001 - Microbiol Mol Biol Rev. 2015 Dec 09;80(1):69-90 2054374 - Biochim Biophys Acta. 1991 Jun 19;1084(1):13-20 15866926 - J Bacteriol. 2005 May;187(10):3407-14 18524913 - Microbiology. 2008 Jun;154(Pt 6):1584-98 16647057 - FEBS Lett. 2006 May 15;580(11):2731-5 23737986 - PLoS One. 2013 May 29;8(5):e64554 23674613 - MBio. 2013 May 14;4(3):e00305-13 e_1_3_3_50_2 e_1_3_3_71_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 Neitzel JJ (e_1_3_3_19_2) 2010; 3 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_70_2 O'Toole G (e_1_3_3_67_2) 2011; 2011 e_1_3_3_17_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 Rabinowitz JL (e_1_3_3_45_2) 1975; 10 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 |
References_xml | – ident: e_1_3_3_17_2 doi: 10.1128/MMBR.67.3.454-472.2003 – ident: e_1_3_3_41_2 doi: 10.1128/mBio.00305-13 – ident: e_1_3_3_18_2 doi: 10.1194/jlr.R800005-JLR200 – ident: e_1_3_3_43_2 doi: 10.1021/jm300908t – ident: e_1_3_3_52_2 doi: 10.1016/j.biochi.2017.06.015 – ident: e_1_3_3_62_2 doi: 10.1128/JCM.01286-11 – ident: e_1_3_3_24_2 doi: 10.1016/j.plipres.2004.05.004 – ident: e_1_3_3_63_2 doi: 10.1038/ismej.2011.167 – ident: e_1_3_3_50_2 doi: 10.1128/JB.00762-16 – ident: e_1_3_3_51_2 doi: 10.1128/jb.175.7.1865-1870.1993 – ident: e_1_3_3_26_2 doi: 10.1016/j.jnutbio.2011.11.009 – ident: e_1_3_3_10_2 doi: 10.1073/pnas.0915021107 – ident: e_1_3_3_38_2 doi: 10.1128/JB.182.12.3405-3415.2000 – volume: 2011 start-page: 2437 year: 2011 ident: e_1_3_3_67_2 article-title: Microtiter dish biofilm formation assay publication-title: J Vis Exp contributor: fullname: O'Toole G – ident: e_1_3_3_56_2 doi: 10.1128/AEM.02044-14 – ident: e_1_3_3_29_2 doi: 10.1128/mmbr.61.4.429-441.1997 – ident: e_1_3_3_64_2 doi: 10.1128/JB.187.10.3407-3414.2005 – ident: e_1_3_3_72_2 doi: 10.1016/j.bbamem.2004.06.012 – ident: e_1_3_3_30_2 doi: 10.1016/0005-2760(91)90049-N – ident: e_1_3_3_58_2 doi: 10.3389/fmicb.2014.00038 – ident: e_1_3_3_61_2 doi: 10.1111/j.1541-4337.2009.00069.x – ident: e_1_3_3_36_2 doi: 10.1128/iai.17.2.303-312.1977 – ident: e_1_3_3_71_2 doi: 10.1074/jbc.M112.442988 – ident: e_1_3_3_44_2 doi: 10.1128/JB.00129-08 – ident: e_1_3_3_53_2 doi: 10.1021/bi060842w – ident: e_1_3_3_16_2 doi: 10.1016/S0021-9258(17)39750-8 – ident: e_1_3_3_47_2 doi: 10.1177/000456329803500213 – ident: e_1_3_3_34_2 doi: 10.1136/gut.35.11.1557 – ident: e_1_3_3_22_2 doi: 10.1371/journal.pone.0064554 – ident: e_1_3_3_66_2 doi: 10.1139/o59-099 – ident: e_1_3_3_33_2 doi: 10.1128/JB.00045-12 – ident: e_1_3_3_9_2 doi: 10.1073/pnas.0308707101 – ident: e_1_3_3_13_2 doi: 10.1128/JB.02409-14 – ident: e_1_3_3_12_2 doi: 10.1128/IAI.01435-06 – ident: e_1_3_3_42_2 doi: 10.1128/AEM.02856-15 – ident: e_1_3_3_11_2 doi: 10.1111/j.1365-2958.2010.07476.x – ident: e_1_3_3_48_2 doi: 10.1371/journal.pone.0082914 – ident: e_1_3_3_2_2 doi: 10.1016/S0272-2712(18)30103-3 – ident: e_1_3_3_6_2 doi: 10.1093/oxfordjournals.jbchem.a124432 – ident: e_1_3_3_8_2 doi: 10.1128/AEM.00924-06 – ident: e_1_3_3_69_2 doi: 10.1038/nrmicro1839 – ident: e_1_3_3_31_2 doi: 10.1128/IAI.72.12.6836-6845.2004 – ident: e_1_3_3_55_2 doi: 10.1016/j.febslet.2006.04.032 – ident: e_1_3_3_27_2 doi: 10.1146/annurev.micro.56.012302.161038 – ident: e_1_3_3_46_2 doi: 10.1042/bj0740427 – ident: e_1_3_3_15_2 doi: 10.1128/AAC.01029-15 – volume: 3 start-page: 57 year: 2010 ident: e_1_3_3_19_2 article-title: Fatty acid molecules: a role in cell signaling publication-title: Nat Education contributor: fullname: Neitzel JJ – ident: e_1_3_3_21_2 doi: 10.1074/jbc.M113.472829 – ident: e_1_3_3_59_2 doi: 10.1371/journal.pone.0155952 – ident: e_1_3_3_7_2 doi: 10.1128/MMBR.00046-15 – ident: e_1_3_3_14_2 doi: 10.1128/IAI.00927-10 – ident: e_1_3_3_70_2 doi: 10.1016/j.bbamcr.2004.03.007 – ident: e_1_3_3_37_2 doi: 10.1073/pnas.0909712107 – ident: e_1_3_3_3_2 doi: 10.1046/j.1365-2958.1997.5481909.x – ident: e_1_3_3_65_2 doi: 10.1128/mBio.02170-15 – ident: e_1_3_3_20_2 doi: 10.1099/mic.0.2008/018135-0 – volume: 10 start-page: 511 year: 1975 ident: e_1_3_3_45_2 article-title: Lipids and other components of human jejunal and ileal mucosa publication-title: Res Commun Chem Pathol Pharmacol contributor: fullname: Rabinowitz JL – ident: e_1_3_3_68_2 doi: 10.1093/nar/gkl838 – ident: e_1_3_3_4_2 doi: 10.1016/S0140-6736(03)12659-1 – ident: e_1_3_3_25_2 doi: 10.1016/j.plipres.2013.12.001 – ident: e_1_3_3_49_2 doi: 10.1128/AEM.00293-16 – ident: e_1_3_3_54_2 doi: 10.1080/08927014.2016.1149571 – ident: e_1_3_3_39_2 doi: 10.1128/iai.65.8.3112-3117.1997 – ident: e_1_3_3_5_2 doi: 10.1111/mmi.12401 – ident: e_1_3_3_23_2 doi: 10.1371/journal.pone.0013557 – ident: e_1_3_3_57_2 doi: 10.1038/ismej.2009.50 – ident: e_1_3_3_60_2 doi: 10.1046/j.1365-2427.1997.00220.x – ident: e_1_3_3_32_2 doi: 10.1371/journal.pone.0004344 – ident: e_1_3_3_35_2 doi: 10.1016/0924-8579(95)00020-9 – ident: e_1_3_3_28_2 doi: 10.1128/MMBR.63.1.230-262.1999 – ident: e_1_3_3_40_2 doi: 10.1128/IAI.66.8.3974-3977.1998 |
SSID | ssj0004068 |
Score | 2.4337173 |
Snippet | The pathogenic
species (
,
, and
) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or... ABSTRACT The pathogenic Vibrio species ( V. cholerae , V. parahaemolyticus , and V. vulnificus ) represent a constant threat to human health, causing foodborne... The pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) represent a constant threat to human health, causing foodborne and skin... The pathogenic Vibrio species ( V. cholerae , V. parahaemolyticus , and V. vulnificus ) represent a constant threat to human health, causing foodborne and skin... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 1 |
SubjectTerms | Aquatic environment Bacteria Biofilms Cell Membrane - chemistry Cell Membrane - metabolism Cell membranes Chromatography Chromatography, Thin Layer Exposure Fatty acids Fatty Acids, Unsaturated - chemistry Fatty Acids, Unsaturated - metabolism Foodborne diseases Foodborne pathogens Health risks Humans Hydrophobicity Ingestion Liquid chromatography Machinery and equipment Mass Spectrometry Mass spectroscopy Membrane permeability Membranes Pathogens Permeability Phospholipids Phospholipids - chemistry Phospholipids - metabolism Physiology Polyunsaturated fatty acids Seafood Skin Thin layer chromatography Vibrio Vibrio cholerae - chemistry Vibrio cholerae - genetics Vibrio cholerae - metabolism Vibrio cholerae - pathogenicity Vibrio Infections - microbiology Vibrio parahaemolyticus - chemistry Vibrio parahaemolyticus - genetics Vibrio parahaemolyticus - metabolism Vibrio parahaemolyticus - pathogenicity Vibrio vulnificus - chemistry Vibrio vulnificus - genetics Vibrio vulnificus - metabolism Vibrio vulnificus - pathogenicity Virulence Water pollution Waterborne diseases Wounds |
Title | Exogenous Polyunsaturated Fatty Acids Impact Membrane Remodeling and Affect Virulence Phenotypes among Pathogenic Vibrio Species |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28864654 https://www.proquest.com/docview/1986339822 https://search.proquest.com/docview/1936159797 https://pubmed.ncbi.nlm.nih.gov/PMC5666147 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEB3iQGh7KK375TYJW2iPsq3VarU6mmCTNLi4pSm5if0SEcRysGSob_3pnV15TdzeetJhVysxM8u8lWbeA_hES1qynNGIKVNGLJY8Uja20ZhZk-vMyVy5Buf5V355w77cprdHkIZeGF-0r1U1rO-Xw7q687WVD0s9CnVio8X8AiEIZpVs1IMeBmg4oodmyDEXgXrS5atQ7U7FaDKdD11hYxrFTnyPCsEdndhhSvoHZ_5dLvko_8xewPMdcCST7gVfwpGt-3DSSUlu-_AkdBg3fXj2iGTwFfye_lp1TKxksbrfburGcXkixDRkJtt2Sya6Mg258u2SZG6XeH6uLfluvUgOLkFkbcjE132Qn9V649uUyOIO13QfcBviBYvIArGke1ClcZZaVyvite1t8xpuZtMfF5fRTnch0ixN26hkMZO4s0sqSlEmOVc6Q1SnnLSVMTq11F9LJTg3jNtUpnKsxLhEMCZxdvIGjutVbd8BMWhgqRKdmFgynWRSSI0Ih-YyQ9xH-QA-B9MXDx29RuGPJVQU6K3Ce6uIswGcBr8Uu03WFHEueJI4AsIBfNwP4_Zw_zzQUmhYnJMgZsuzHJd427lx_6Dg_wFkBw7eT3DU24cjGJGegnsXge__-84P8JQ6gOAKCtNTOG7XG3uG8KZV59C7_ibOfVD_AcqR_J4 |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4aQ2hw4EeBrTDASHBM2jhO4hyrqVUH61TBNu0W2Y6jRaxp1aQS5cSfzrNTV-s4wSkHO3bi92x_Tr73PYBPtKAFSxn1mMwLjwUi9qQOtNdnOk9VYtJcmQDnyXk8vmRfrqPrPYhcLIwl7StZ-tXtzK_KG8utXMxUz_HEetPJCUIQ3FWS3gN4iPO1z9wh3YVD9mPuxCfNjuX47pT3BsOJb6iNkReY9HuU89gIiu1uSn8hzfuEyTs70OgZXLlnb4knP_xVI331656s4z-_3HN4usGkZNAWv4A9XXXgUZulct2BAxe8XHfgyR39wpfwe_hz3oq8kun8dr2qaiMTiug1JyPRNGsyUGVek1MbiUkmeoZH80qTb9rm38EmiKhyMrCUEnJVLlc2AopMb7BN8224JjYXEpkiTDUdlQpryWU5J98XGhel-hVcjoYXJ2Nvk9LBUyyKGq9gARO4aBSUF7wI01iqBAGjNFmz8lxFmtprIXkc5yzWkYhEX_J-gThPYO3wNexX80ofAcnRckKGKswDwVSYCC4UgieaigQhJY278NnZNFu0yh2ZPfFQnqEbZNYNsiDpwrEzeLaZv3UWpDwOQ6Nt2IWP22KceeZ3Co4UDizWCREOpkmKTRy2_rHtyDlWF5Idz9lWMKreuyXoD1bde2P_N_995wc4GF9MzrKz0_Ovb-ExNTjE8BajY9hvliv9DlFUI9_bOfMHzrQdsQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZgENuBpWyFAYwEx2yO4zjHamg1A3QUAYNGXCJv0URM06pJJcqJn86z01TtcJtTDn6xE_vZ_px873sIvSclKWlGiUelLj0aCeZJExkvpEZnKrVprmyA8_SUHZ_RT-fJ-U6qL0faV7Ly68uZX1cXjlu5mKmg54kF-fQIIAjsKmmw0GVwE92CORuy_qDeh0SGjPcClHbX6jnvhAej8dS39MbEi2wKPsI5s6Ji-xvTf2jzKmlyZxeaPEQ_--fvyCe__FUrffXnirTjtV7wEXqwwaZ41Jk8RjdMPUC3u2yV6wG62wcxNwN0f0fH8An6O_4978RecT6_XK_qxsqFAorVeCLado1HqtINPnERmXhqZnBErw3-alweHqgCi1rjkaOW4B_VcuUioXB-AXXab8QNdjmRcA5w1TZUKbCSy2qOvy0MLE7NU3Q2GX8_OvY2qR08RZOk9UoaUQGLR0l4ycs4Y1KlABylzZ6ltUoMcddScsY0ZSYRiQglD0vAewKs42fooJ7X5gXCGkZPyFjFOhJUxangQgGIIplIAVoSNkQf-nEtFp2CR-FOPoQX4AqFc4UiSofosB_0YjOPmyLKOItjq3E4RO-2xTAD7W8V6CnoWLCJARZmaQZVPO98ZNtQ71xDlO55z9bAqnvvl4BPOJXvjQ-8vPadb9Gd_OOk-HJy-vkVukcsHLH0xeQQHbTLlXkNYKqVb9y0-QeyMiAx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exogenous+Polyunsaturated+Fatty+Acids+Impact+Membrane+Remodeling+and+Affect+Virulence+Phenotypes+among+Pathogenic+Vibrio+Species&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Moravec%2C+Anna+R.&rft.au=Siv%2C+Andrew+W.&rft.au=Hobby%2C+Chelsea+R.&rft.au=Lindsay%2C+Emily+N.&rft.date=2017-11-15&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=83&rft.issue=22&rft_id=info:doi/10.1128%2FAEM.01415-17&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_AEM_01415_17 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |