Nitric Oxide Signalling in Descending Vasa Recta after Hypoxia/Re-Oxygenation

Reduced renal medullary oxygen supply is a key factor in the pathogenesis of acute kidney injury (AKI). As the medulla exclusively receives blood through descending vasa recta (DVR), dilating these microvessels after AKI may help in renoprotection by restoring renal medullary blood flow. We stimulat...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 23; no. 13; p. 7016
Main Authors Xu, Minze, Lichtenberger, Falk-Bach, Erdoǧan, Cem, Lai, Enyin, Persson, Pontus B., Patzak, Andreas, Khedkar, Pratik H.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Reduced renal medullary oxygen supply is a key factor in the pathogenesis of acute kidney injury (AKI). As the medulla exclusively receives blood through descending vasa recta (DVR), dilating these microvessels after AKI may help in renoprotection by restoring renal medullary blood flow. We stimulated the NO-sGC-cGMP signalling pathway in DVR at three different levels before and after hypoxia/re-oxygenation (H/R). Rat DVR were isolated and perfused under isobaric conditions. The phosphodiesterase 5 (PDE5) inhibitor sildenafil (10−6 mol/L) impaired cGMP degradation and dilated DVR pre-constricted with angiotensin II (Ang II, 10−6 mol/L). Dilations by the soluble guanylyl cyclase (sGC) activator BAY 60-2770 as well as the nitric oxide donor sodium nitroprusside (SNP, 10−3 mol/L) were equally effective. Hypoxia (0.1% O2) augmented DVR constriction by Ang II, thus potentially aggravating tissue hypoxia. H/R left DVR unresponsive to sildenafil, yet sGC activation by BAY 60-2770 effectively dilated DVR. Dilation to SNP under H/R is delayed. In conclusion, H/R renders PDE5 inhibition ineffective in dilating the crucial vessels supplying the area at risk for hypoxic damage. Stimulating sGC appears to be the most effective in restoring renal medullary blood flow after H/R and may prove to be the best target for maintaining oxygenation to this vulnerable area of the kidney.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms23137016