Hydrazine Radiolysis by Gamma-Ray in the N2H4–Cu+–HNO3 System

Radiolysis of chemical agents occurs during the decontamination of nuclear power plants. The γ-ray irradiation tests of the N2H4–Cu+–HNO3 solution, a decontamination agent, were performed to investigate the effect of Cu+ ion and HNO3 on N2H4 decomposition using a Co-60 high-dose irradiator. After th...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 22; no. 14; p. 7376
Main Authors Chang, Naon, Won, Huijun, Park, Sangyoon, Eun, Heechul, Kim, Seonbyeong, Seo, Bumkyung, Kim, Yongsoo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 09.07.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Radiolysis of chemical agents occurs during the decontamination of nuclear power plants. The γ-ray irradiation tests of the N2H4–Cu+–HNO3 solution, a decontamination agent, were performed to investigate the effect of Cu+ ion and HNO3 on N2H4 decomposition using a Co-60 high-dose irradiator. After the irradiation, the residues of N2H4 decomposition were analyzed by Ultraviolet-visible (UV) spectroscopy. NH4+ ions generated from N2H4 radiolysis were analyzed by ion chromatography. Based on the results, the decomposition mechanism of N2H4 in the N2H4–Cu+–HNO3 solution under γ-ray irradiation condition was derived. Cu+ ions form Cu+N2H4 complexes with N2H4, and then N2H4 is decomposed into intermediates. H+ ions and H● radicals generated from the reaction between H+ ion and eaq− increased the N2H4 decomposition reaction. NO3− ions promoted the N2H4 decomposition by providing additional reaction paths: (1) the reaction between NO3− ions and N2H4●+, and (2) the reaction between NO● radical, which is the radiolysis product of NO3− ion, and N2H5+. Finally, the radiolytic decomposition mechanism of N2H4 obtained in the N2H4–Cu+–HNO3 was schematically suggested.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22147376