Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering
Regenerative engineering converges tissue engineering, advanced materials science, stem cell science, and developmental biology to regenerate complex tissues such as whole limbs. Regenerative engineering scaffolds provide mechanical support and nanoscale control over architecture, topography, and bi...
Saved in:
Published in | Advanced drug delivery reviews Vol. 107; pp. 247 - 276 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Regenerative engineering converges tissue engineering, advanced materials science, stem cell science, and developmental biology to regenerate complex tissues such as whole limbs. Regenerative engineering scaffolds provide mechanical support and nanoscale control over architecture, topography, and biochemical cues to influence cellular outcome. In this regard, poly (lactic acid) (PLA)-based biomaterials may be considered as a gold standard for many orthopaedic regenerative engineering applications because of their versatility in fabrication, biodegradability, and compatibility with biomolecules and cells. Here we discuss recent developments in PLA-based biomaterials with respect to processability and current applications in the clinical and research settings for bone, ligament, meniscus, and cartilage regeneration.
A schematic illustrating the application of PLA-based biomaterials in the form of sintered microspheres, electrospun nanofibers, porous biphasic, and 3-D braided microfiber scaffolds for bone, cartilage, meniscus, and ligament regeneration. [Display omitted] |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 0169-409X 1872-8294 |
DOI: | 10.1016/j.addr.2016.04.015 |