Positronium Confined in Nanocavities: The Role of Electron Exchange Correlations

Positronium atoms (Ps) are commonly employed as a probe to characterize nanometric or subnanometric voids or vacancies in nonmetallic materials, where Ps can end up confined. The annihilation lifetime of a trapped Ps is strongly modified by pickoff and depends on the cavity size and on the electron...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 11; no. 9; p. 2350
Main Authors Castelli, Fabrizio, Consolati, Giovanni, Tanzi Marlotti, Giacomo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 10.09.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Positronium atoms (Ps) are commonly employed as a probe to characterize nanometric or subnanometric voids or vacancies in nonmetallic materials, where Ps can end up confined. The annihilation lifetime of a trapped Ps is strongly modified by pickoff and depends on the cavity size and on the electron density in the confining cavity surface. Here, we develop a theory of the Ps annihilation in nanocavities based on the fundamental role of the exchange correlations between the Ps-electron and the outer electrons, which are not usually considered but must be considered to correctly theorize the pickoff annihilation processes. We obtain an important relation connecting the two relevant annihilation rates (for the p-Ps and the o-Ps) with the electron density, which has the property of being totally independent of the geometrical characteristics of the nanoporous medium. This general relation can be used to gather information on the electron density and on the average cavity radius of the confining medium, starting from the experimental data on PALS annihilation spectra. Moreover, by analyzing our results, we also highlight that a reliable interpretation of the PALS spectra can only be obtained if the rule of 1/3 between the intensities of p-Ps and o-Ps lifetimes can be fulfilled.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2079-4991
2079-4991
DOI:10.3390/nano11092350