Soil quality relationships with tree growth in exotic forests in New Zealand

Quantitative information on the relationships between site quality and plantation productivity (dominated by the exotic species Pinus radiata) is required to achieve goals for sustainable forest production. Soil quality is a key component of site quality. A nationwide study of soil quality measureme...

Full description

Saved in:
Bibliographic Details
Published inForest ecology and management Vol. 258; no. 10; pp. 2326 - 2334
Main Authors Ross, Craig W., Watt, Michael S., Parfitt, Roger L., Simcock, Robyn, Dando, John, Coker, Graham, Clinton, Peter W., Davis, Murray R.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Kidlington Elsevier B.V 30.10.2009
[Amsterdam]: Elsevier Science
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Quantitative information on the relationships between site quality and plantation productivity (dominated by the exotic species Pinus radiata) is required to achieve goals for sustainable forest production. Soil quality is a key component of site quality. A nationwide study of soil quality measurements is reported for 35 representative forest sites, covering a wide range of climatic and edaphic conditions found throughout New Zealand's plantation forest estate, representing most of the soils used for plantation forestry in New Zealand. The objectives of the study were to find the most important soil properties that discriminated among eight New Zealand Soil Orders and determine relationships between Soil Orders and early tree growth rates for P. radiata and Cupressus lusitanica. Soil physical and chemical properties were measured to identify key soil indicators of soil quality related to tree productivity. Tree growth was measured after four years on small plots planted at very high stand density (40 000 stems ha −1). A factorial design was used to examine the influence of three factors on tree productivity: two species, P. radiata D. Don (ectomycorrhizal) and C. lusitanica Miller (endomycorrhizal); with and without fertilizer; and low or high disturbance (soil compaction and/or topsoil scalping by machinery). Carbon content, Phosphorus (P) retention, and soil physical properties that index the degree of soil compactness were strongly correlated to Soil Order. These properties are similar to soil quality factors that correlated with tree growth. Discriminant analyses of soil quality parameters by Soil Order clustered soils based on P retention (phosphate absorption capacity), subsoil Carbon (C), and subsoil air capacity (volume % of voids at 10 kPa matric potential). Allophanic Soils and Podzols clustered (from plots of first versus second canonical variates) separately from the other Soil Orders, which were somewhat clustered on the second variate within a broad clustering on the first variate. Soil Orders were ranked for tree growth rates for both species: pumice Andisols > Inceptisols > tephric Andisols > Entisols > Ultisols > Spodosols (NZ classification: for P. radiata is Pumice > Brown > Pallic > Allophanic > Recent > Raw > Ultic > Podzol and for C. lusitanica Pumice > Pallic > Allophanic > Brown > Raw > Ultic > Recent > Podzol).
Bibliography:http://dx.doi.org/10.1016/j.foreco.2009.05.026
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0378-1127
1872-7042
DOI:10.1016/j.foreco.2009.05.026