Synthesis, Structural and Sensor Properties of Nanosized Mixed Oxides Based on In2O3 Particles
The paper considers the relationship between the structure and properties of nanostructured conductometric sensors based on binary mixtures of semiconductor oxides designed to detect reducing gases in the environment. The sensor effect in such systems is determined by the chemisorption of molecules...
Saved in:
Published in | International journal of molecular sciences Vol. 24; no. 2; p. 1570 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
13.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The paper considers the relationship between the structure and properties of nanostructured conductometric sensors based on binary mixtures of semiconductor oxides designed to detect reducing gases in the environment. The sensor effect in such systems is determined by the chemisorption of molecules on the surface of catalytically active particles and the transfer of chemisorbed products to electron-rich nanoparticles, where these products react with the analyzed gas. In this regard, the role is evaluated of the method of synthesizing the composites, the catalytic activity of metal oxides (CeO2, SnO2, ZnO), and the type of conductivity of metal oxides (Co3O4, ZrO2) in the sensor process. The effect of oxygen vacancies present in the composites on the performance characteristics is also considered. Particular attention is paid to the influence of the synthesis procedure for preparing sensitive layers based on CeO2–In2O3 on the structure of the resulting composites, as well as their conductive and sensor properties. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms24021570 |