Hybridization chain reaction for regulating surface capacitance of organic photoelectrochemical transistor toward sensitive miRNA detection
Photon-enabled bioelectronics has long been pursued in modern electronics due to their non-contact, remote-control, and even self-powered function interfacing the biological world with semiconductor devices. The debuting organic photoelectrochemical transistor (OPECT) relies on the photovoltage gene...
Saved in:
Published in | Biosensors & bioelectronics Vol. 209; p. 114224 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Photon-enabled bioelectronics has long been pursued in modern electronics due to their non-contact, remote-control, and even self-powered function interfacing the biological world with semiconductor devices. The debuting organic photoelectrochemical transistor (OPECT) relies on the photovoltage generated by the semiconductors to modulate the channel conductance, which enables light-fueled operation at zero gate bias. Inspired by the insulating nature of macrobiomolecules and surface capacitance mechanism, herein we demonstrate the biological regulation of the surface capacitance towards new OPECT biodetection, which was exemplified by a CdS quantum dots/TiO2 nanotubes photoanode accommodating hybridization chain reaction (HCR) amplification with the target of biomarker miRNA-17. Formation of the non-conducting DNA layer from the miRNA-17-oriented HCR could decrease the surface capacitance and increase the corresponding fractional potential drop, shifting the transfer curve horizontally to higher gate voltage and thus producing different drain currents. The OPECT biosensor exhibited a linear relationship with the miRNA-17 concentration on the logarithmic axis in the range from 1 pm. to 10 μm with a detection limit of 1 pm. This work not only represented a generic methodology of miRNA detection, but also provided a universal mechanism for the operation of advanced OPECT bioanalytics.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0956-5663 1873-4235 1873-4235 |
DOI: | 10.1016/j.bios.2022.114224 |