Integration of InSAR Time-Series Analysis and Water-Vapor Correction for Mapping Postseismic Motion After the 2003 Bam (Iran) Earthquake

Atmospheric water-vapor effects represent a major limitation of interferometric synthetic aperture radar (InSAR) techniques, including InSAR time-series (TS) approaches (e.g., persistent or permanent scatterers and small-baseline subset). For the first time, this paper demonstrates the use of InSAR...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 47; no. 9; pp. 3220 - 3230
Main Authors Zhenhong Li, Fielding, E.J., Cross, P.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Atmospheric water-vapor effects represent a major limitation of interferometric synthetic aperture radar (InSAR) techniques, including InSAR time-series (TS) approaches (e.g., persistent or permanent scatterers and small-baseline subset). For the first time, this paper demonstrates the use of InSAR TS with precipitable water-vapor (InSAR TS + PWV) correction model for deformation mapping. We use MEdium Resolution Imaging Spectrometer (MERIS) near-infrafred (NIR) water-vapor data for InSAR atmospheric correction when they are available. For the dates when the NIR data are blocked by clouds, an atmospheric phase screen (APS) model has been developed to estimate atmospheric effects using partially water-vapor-corrected interferograms. Cross validation reveals that the estimated APS agreed with MERIS-derived line-of-sight path delays with a small standard deviation (0.3-0.5 cm) and a high correlation coefficient (0.84-0.98). This paper shows that a better TS of postseismic motion after the 2003 Bam (Iran) earthquake is achievable after reduction of water-vapor effects using the InSAR TS + PWV technique with coincident MERIS NIR water-vapor data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2009.2019125