Functional sex differences in human primary auditory cortex

We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no a...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of nuclear medicine and molecular imaging Vol. 34; no. 12; pp. 2073 - 2081
Main Authors Ruytjens, Liesbet, Georgiadis, Janniko R, Holstege, Gert, Wit, Hero P, Albers, Frans W J, Willemsen, Antoon T M
Format Journal Article
LanguageEnglish
Published Germany Springer Nature B.V 01.12.2007
Springer-Verlag
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1619-7070
1619-7089
DOI:10.1007/s00259-007-0517-z