Furnishing Wound Repair by the Subcutaneous Fascia
Mammals rapidly heal wounds through fibrous connective tissue build up and tissue contraction. Recent findings from mouse attribute wound healing to physical mobilization of a fibroelastic connective tissue layer that resides beneath the skin, termed subcutaneous fascia or superficial fascia, into s...
Saved in:
Published in | International journal of molecular sciences Vol. 22; no. 16; p. 9006 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
20.08.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Mammals rapidly heal wounds through fibrous connective tissue build up and tissue contraction. Recent findings from mouse attribute wound healing to physical mobilization of a fibroelastic connective tissue layer that resides beneath the skin, termed subcutaneous fascia or superficial fascia, into sites of injury. Fascial mobilization assembles diverse cell types and matrix components needed for rapid wound repair. These observations suggest that the factors directly affecting fascial mobility are responsible for chronic skin wounds and excessive skin scarring. In this review, we discuss the link between the fascia’s unique tissue anatomy, composition, biomechanical, and rheologic properties to its ability to mobilize its tissue assemblage. Fascia is thus at the forefront of tissue pathology and a better understanding of how it is mobilized may crystallize our view of wound healing alterations during aging, diabetes, and fibrous disease and create novel therapeutic strategies for wound repair. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms22169006 |