Cancer-Germline Antigen Expression Discriminates Clinical Outcome to CTLA-4 Blockade
CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We...
Saved in:
Published in | Cell Vol. 173; no. 3; pp. 624 - 633.e8 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
19.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has previously been shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro. We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors.
[Display omitted]
•Increased expression of a MAGE-A subcluster predicts resistance to CTLA-4 blockade•This MAGE-A subcluster marks a distinct, epigenetically defined subset of melanomas•This gene signature is specific to resistance to CTLA-4, but not PD-1, blockade•Autophagy is implicated in clinical resistance to CTLA-4 blockade
Increased expression of a subcluster of MAGE-A cancer-germline antigens predicts resistance specific to CTLA-4, but not PD-1, blockade, and its association with autophagy suppression implicates the role of autophagy in regulating primary resistance to anti-CTLA-4 therapy in melanoma patients. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally |
ISSN: | 0092-8674 1097-4172 |
DOI: | 10.1016/j.cell.2018.03.026 |