A Shortage of FTH Induces ROS and Sensitizes RAS-Proficient Neuroblastoma N2A Cells to Ferroptosis

Ferroptosis, an iron-dependent form of programmed cell death, has excellent potential as an anti-cancer therapeutic strategy in different types of tumors, especially in RAS-mutated ones. However, the function of ferroptosis for inhibiting neuroblastoma, a common child malignant tumor with minimal tr...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 22; no. 16; p. 8898
Main Authors Lu, Ruiqing, Jiang, Yinan, Lai, Xianxin, Liu, Shujie, Sun, Litao, Zhou, Zhong-Wei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 18.08.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ferroptosis, an iron-dependent form of programmed cell death, has excellent potential as an anti-cancer therapeutic strategy in different types of tumors, especially in RAS-mutated ones. However, the function of ferroptosis for inhibiting neuroblastoma, a common child malignant tumor with minimal treatment, is unclear. This study investigated the anti-cancer function of ferroptosis inducer Erastin or RSL3 in neuroblastoma N2A cells. Our results show that Erastin or RSL3 induces ROS level and cell death and, therefore, reduces the viability of RAS-proficient N2A cells. Importantly, inhibitors to ferroptosis, but not apoptosis, ameliorate the high ROS level and viability defect in Erastin- or RSL3-treated cells. In addition, our data also show that N2A cells are much more sensitive to ferroptosis inducers than primary mouse cortical neural stem cells (NSCs) or neurons. Moreover, a higher level of ROS and PARylation is evidenced in N2A, but not NSCs. Mechanically, ferritin heavy chain 1 (Fth), the ferroxidase function to oxidate redox-active Fe2+ to redox-inactive Fe3+, is likely responsible for the hypersensitivity of N2A to ferroptosis induction since its expression is lower in N2A compared to NSCs; ectopic expression of Fth reduces ROS levels and cell death, and induces expression of GPX4 and cell viability in N2A cells. Most importantly, neuroblastoma cell lines express a significantly low level of Fth than almost all other types of cancer cell lines. All these data suggest that Erastin or RSL3 induce ferroptosis cell death in neuroblastoma N2A cells, but not normal neural cells, regardless of RAS mutations, due to inadequate FTH. This study, therefore, provides new evidence that ferroptosis could be a promising therapeutic target for neuroblastoma.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22168898