The depletion of DNA methyltransferase-1 and the epigenetic effects of 5-aza-2'deoxycytidine (decitabine) are differentially regulated by cell cycle progression

5-Aza-2'-deoxycytidine (decitabine) is a drug targeting the epigenetic abnormalities of tumors. The basis for its limited efficacy in solid tumors is unresolved, but may relate to their indolent growth, their p53 genotype or both. We report that the primary molecular mechanism of decitabine-dep...

Full description

Saved in:
Bibliographic Details
Published inEpigenetics Vol. 6; no. 8; pp. 1021 - 1028
Main Authors Al-Salihi, Mazin, Yu, Margaret, Burnett, David M., Alexander, Amanda, Samlowski, Wolfram E., Fitzpatrick, Frank A.
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 01.08.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:5-Aza-2'-deoxycytidine (decitabine) is a drug targeting the epigenetic abnormalities of tumors. The basis for its limited efficacy in solid tumors is unresolved, but may relate to their indolent growth, their p53 genotype or both. We report that the primary molecular mechanism of decitabine-depletion of DNA methyltransferase-1 following its "suicide" inactivation-is not absolutely associated with cell cycle progression in HCT 116 colon cancer cells, but is associated with their p53 genotype. Control experiments affirmed that the secondary molecular effects of decitabine on global and promoter-specific CpG methylation and MAGE-A1 mRNA expression were S-phase dependent, as expected. Secondary changes in CpG methylation occurred only in growing cells ~24-48 h after decitabine treatment; these epigenetic changes coincided with p53 accumulation, an index of DNA damage. Conversely, primary depletion of DNA methyltransferase-1 began immediately after a single exposure to 300 nM decitabine and it progressed to completion within ~8 h, even in confluent cells arrested in G 1 and G 2 /M. Our results suggest that DNA repair and remodeling activity in arrested, confluent cells may be sufficient to support the primary molecular action of decitabine, while its secondary, epigenetic effects require cell cycle progression through S-phase.
ISSN:1559-2294
1559-2308
DOI:10.4161/epi.6.8.16064