Surrogate Model Application to the Identification of Optimal Groundwater Exploitation Scheme Based on Regression Kriging Method-A Case Study of Western Jilin Province

This paper introduces a surrogate model to identify an optimal exploitation scheme, while the western Jilin province was selected as the study area. A numerical simulation model of groundwater flow was established first, and four exploitation wells were set in the Tongyu county and Qian Gorlos count...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental research and public health Vol. 12; no. 8; pp. 8897 - 8918
Main Authors An, Yongkai, Lu, Wenxi, Cheng, Weiguo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.07.2015
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper introduces a surrogate model to identify an optimal exploitation scheme, while the western Jilin province was selected as the study area. A numerical simulation model of groundwater flow was established first, and four exploitation wells were set in the Tongyu county and Qian Gorlos county respectively so as to supply water to Daan county. Second, the Latin Hypercube Sampling (LHS) method was used to collect data in the feasible region for input variables. A surrogate model of the numerical simulation model of groundwater flow was developed using the regression kriging method. An optimization model was established to search an optimal groundwater exploitation scheme using the minimum average drawdown of groundwater table and the minimum cost of groundwater exploitation as multi-objective functions. Finally, the surrogate model was invoked by the optimization model in the process of solving the optimization problem. Results show that the relative error and root mean square error of the groundwater table drawdown between the simulation model and the surrogate model for 10 validation samples are both lower than 5%, which is a high approximation accuracy. The contrast between the surrogate-based simulation optimization model and the conventional simulation optimization model for solving the same optimization problem, shows the former only needs 5.5 hours, and the latter needs 25 days. The above results indicate that the surrogate model developed in this study could not only considerably reduce the computational burden of the simulation optimization process, but also maintain high computational accuracy. This can thus provide an effective method for identifying an optimal groundwater exploitation scheme quickly and accurately.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph120808897